Home
Class 12
MATHS
Evaluate : int(sqrt(ax)-(1)/(sqrt(ax)...

Evaluate :
`int(sqrt(ax)-(1)/(sqrt(ax)))^(2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \left( \sqrt{ax} - \frac{1}{\sqrt{ax}} \right)^2 dx, \] we will first expand the integrand and then integrate term by term. ### Step 1: Expand the integrand Using the identity \((A - B)^2 = A^2 - 2AB + B^2\), we can expand the expression: \[ \left( \sqrt{ax} - \frac{1}{\sqrt{ax}} \right)^2 = (\sqrt{ax})^2 - 2\left(\sqrt{ax}\right)\left(\frac{1}{\sqrt{ax}}\right) + \left(\frac{1}{\sqrt{ax}}\right)^2. \] This simplifies to: \[ ax - 2 + \frac{1}{ax}. \] ### Step 2: Write the integral Now we can rewrite the integral: \[ \int \left( ax - 2 + \frac{1}{ax} \right) dx. \] ### Step 3: Integrate term by term Now we will integrate each term separately: 1. \(\int ax \, dx = \frac{a}{2} x^2\) 2. \(\int -2 \, dx = -2x\) 3. \(\int \frac{1}{ax} \, dx = \frac{1}{a} \ln |x|\) Putting it all together, we have: \[ \int \left( ax - 2 + \frac{1}{ax} \right) dx = \frac{a}{2} x^2 - 2x + \frac{1}{a} \ln |x| + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \frac{a}{2} x^2 - 2x + \frac{1}{a} \ln |x| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(ax-x^(2)))

Evaluate: int((1+sqrt(x))^(2))/(sqrt(x))dx

int(sqrt(a)-sqrt(x))/(1-sqrt(ax))dx

Evaluate: int(sqrt(a)-sqrt(x))/(1-sqrt(a x))\ dx

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate the integral int(sqrt(x)+(1)/(sqrt(x)))^(2)dx

Evaluate the integral : int(sqrt(x)+(1)/(sqrt(x)))^(2)dx

Find the integral int(sqrt(x)-(1)/(sqrt(x)))^(2)dx

Evaluate: int sqrt(2ax-x^(2))dx

Evaluate: int sqrt(2ax-x^(2))dx