Home
Class 12
MATHS
Evaluate : int x log 2x dx...

Evaluate :
`int x log 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \log(2x) \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify the functions for integration by parts**: We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Here, we can choose: - \( u = \log(2x) \) (logarithmic function) - \( dv = x \, dx \) (algebraic function) 2. **Differentiate \( u \) and integrate \( dv \)**: - Differentiate \( u \): \[ du = \frac{d}{dx}(\log(2x)) \, dx = \frac{1}{2x} \cdot 2 \, dx = \frac{1}{x} \, dx \] - Integrate \( dv \): \[ v = \int x \, dx = \frac{x^2}{2} \] 3. **Apply the integration by parts formula**: Substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int x \log(2x) \, dx = uv - \int v \, du \] This gives us: \[ \int x \log(2x) \, dx = \log(2x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx \] 4. **Simplify the integral**: The integral simplifies to: \[ \int x \log(2x) \, dx = \frac{x^2}{2} \log(2x) - \int \frac{x^2}{2x} \, dx = \frac{x^2}{2} \log(2x) - \int \frac{x}{2} \, dx \] 5. **Evaluate the remaining integral**: \[ \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] 6. **Combine the results**: Now, substituting back, we have: \[ \int x \log(2x) \, dx = \frac{x^2}{2} \log(2x) - \frac{x^2}{4} + C \] ### Final Answer: \[ \int x \log(2x) \, dx = \frac{x^2}{2} \log(2x) - \frac{x^2}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int x^n log x dx.

Evaluate int (1)/(x log x) dx

Evaluate: int x log(1+x)dx

Evaluate int x log x dx .

Evaluate: int(log x)^(2)dx

Evaluate: (i) int(1)/(x log x log(log x)dx) (ii) int(cos ec^(2)x)/(1+cot x)dx

Evaluate int x(log_ex)^2dx

Evaluate: int x^(2)log(1+x)dx

Evaluate: int(log x^(2))/(x)dx