Home
Class 12
MATHS
Evaluate : int(0)^(pi//2) sqrt(1+ sin...

Evaluate :
`int_(0)^(pi//2) sqrt(1+ sin 2x dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} \, dx \] We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the expression inside the square root: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x \] ### Step 2: Use the identity \( \sin^2 x + \cos^2 x = 1 \) We can express \( 1 \) as \( \cos^2 x + \sin^2 x \): \[ 1 + \sin 2x = \cos^2 x + \sin^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2 \] So, we have: \[ \sqrt{1 + \sin 2x} = \sqrt{(\sin x + \cos x)^2} = \sin x + \cos x \] ### Step 3: Substitute back into the integral Now we can substitute this back into our integral: \[ I = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx \] ### Step 4: Separate the integral We can separate the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] ### Step 5: Evaluate the integrals Now we evaluate each integral separately: 1. For \( \int \sin x \, dx \): \[ \int \sin x \, dx = -\cos x \quad \text{(evaluated from 0 to } \frac{\pi}{2}\text{)} \] \[ = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] 2. For \( \int \cos x \, dx \): \[ \int \cos x \, dx = \sin x \quad \text{(evaluated from 0 to } \frac{\pi}{2}\text{)} \] \[ = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] ### Step 6: Combine the results Now we can combine the results of the two integrals: \[ I = 1 + 1 = 2 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^( pi/2)sqrt(1-sin x)dx

Evaluate : (i) int_(0)^(pi//4)sqrt(1+sin2x)\ dx (ii) int_(0)^(pi//2)sqrt(1+cos2x)\ dx

Evaluate :int_(0)^((pi)/(2))sqrt(1+sin x)dx

int_(0)^((pi)/(4)) sqrt(1+sin 2x) dx =

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

Evaluate: int_(pi/4)^( pi/2)sqrt(1-sin2x)dx

Evaluate: int_(0)^( pi/4)sqrt(1+sin2x)dx (ii) int_(0)^( pi/4)sqrt(1-sin2x)dx