Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)e^(x)(sin x-...

Evaluate :
`int_(0)^(pi//2)e^(x)(sin x- cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} e^x (\sin x - \cos x) \, dx, \] we can use integration by parts or recognize a pattern in the integrand. Here, we will use the method of recognizing the derivative of a function. ### Step 1: Rewrite the integral We can rewrite the integral as follows: \[ I = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx. \] Let’s denote the two integrals separately: \[ I_1 = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx, \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx. \] Thus, we have: \[ I = I_1 - I_2. \] ### Step 2: Evaluate \( I_1 \) To evaluate \( I_1 \), we use integration by parts. Let: - \( u = \sin x \) and \( dv = e^x dx \). - Then, \( du = \cos x \, dx \) and \( v = e^x \). Using integration by parts: \[ I_1 = \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx. \] Evaluating the boundary term: \[ \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) - e^0 \sin(0) = e^{\frac{\pi}{2}} \cdot 1 - 1 \cdot 0 = e^{\frac{\pi}{2}}. \] Thus, we have: \[ I_1 = e^{\frac{\pi}{2}} - I_2. \] ### Step 3: Evaluate \( I_2 \) Now we can evaluate \( I_2 \) similarly: Let: - \( u = \cos x \) and \( dv = e^x dx \). - Then, \( du = -\sin x \, dx \) and \( v = e^x \). Using integration by parts: \[ I_2 = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx. \] Evaluating the boundary term: \[ \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) - e^0 \cos(0) = e^{\frac{\pi}{2}} \cdot 0 - 1 \cdot 1 = -1. \] Thus, we have: \[ I_2 = -1 + I_1. \] ### Step 4: Substitute back Now we have two equations: 1. \( I_1 = e^{\frac{\pi}{2}} - I_2 \) 2. \( I_2 = -1 + I_1 \) Substituting the second equation into the first: \[ I_1 = e^{\frac{\pi}{2}} - (-1 + I_1). \] This simplifies to: \[ I_1 = e^{\frac{\pi}{2}} + 1 - I_1. \] Combining like terms gives: \[ 2I_1 = e^{\frac{\pi}{2}} + 1. \] Thus, \[ I_1 = \frac{e^{\frac{\pi}{2}} + 1}{2}. \] ### Step 5: Find \( I_2 \) Now substituting \( I_1 \) back into the equation for \( I_2 \): \[ I_2 = -1 + \frac{e^{\frac{\pi}{2}} + 1}{2} = \frac{e^{\frac{\pi}{2}} - 1}{2}. \] ### Step 6: Final result for \( I \) Now substituting \( I_1 \) and \( I_2 \) back into the expression for \( I \): \[ I = I_1 - I_2 = \left(\frac{e^{\frac{\pi}{2}} + 1}{2}\right) - \left(\frac{e^{\frac{\pi}{2}} - 1}{2}\right). \] This simplifies to: \[ I = \frac{(e^{\frac{\pi}{2}} + 1) - (e^{\frac{\pi}{2}} - 1)}{2} = \frac{2}{2} = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(e^(sin x)- e^(cos x)))dx=

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

int_(0)^( pi/2)e^(x)(cos x-sin x)dx=

Evaluate : int_(0)^( pi/2)e^(sin x )*cos xdx

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)e^(x)((1+sin x)/(1+cos x))dx=

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

Evaluate: int_(0)^((pi)/(2))(sin x)/(sin x+cos x)dx

int_(0)^((pi)/(2))(x sin x*cos x)dx