Home
Class 12
MATHS
Evaluate : int(4)^(9)(sqrt(x))/(30-x^(...

Evaluate :
`int_(4)^(9)(sqrt(x))/(30-x^(3//2))^2dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{4}^{9} \frac{\sqrt{x}}{(30 - x^{3/2})^2} \, dx, \] we will use a substitution method. Let's go through the steps systematically. ### Step 1: Substitution Let \[ t = 30 - x^{3/2}. \] Now, we need to find \(dx\) in terms of \(dt\). First, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = -\frac{3}{2} x^{1/2}. \] Thus, we can express \(dx\) as: \[ dx = -\frac{2}{3} \frac{dt}{\sqrt{x}}. \] ### Step 2: Change of Limits Next, we need to change the limits of integration. - When \(x = 4\): \[ t = 30 - 4^{3/2} = 30 - 8 = 22. \] - When \(x = 9\): \[ t = 30 - 9^{3/2} = 30 - 27 = 3. \] So, the new limits for \(t\) will be from \(22\) to \(3\). ### Step 3: Substitute in the Integral Now we substitute \(t\) and \(dx\) into the integral: \[ \int_{4}^{9} \frac{\sqrt{x}}{(30 - x^{3/2})^2} \, dx = \int_{22}^{3} \frac{\sqrt{x}}{t^2} \left(-\frac{2}{3} \frac{dt}{\sqrt{x}}\right). \] The \(\sqrt{x}\) terms cancel out: \[ = -\frac{2}{3} \int_{22}^{3} \frac{1}{t^2} \, dt. \] ### Step 4: Change the Limits We can change the limits of integration, which introduces a negative sign: \[ = \frac{2}{3} \int_{3}^{22} \frac{1}{t^2} \, dt. \] ### Step 5: Evaluate the Integral Now we evaluate the integral: \[ \int \frac{1}{t^2} \, dt = -\frac{1}{t}. \] Thus, \[ \frac{2}{3} \left[-\frac{1}{t}\right]_{3}^{22} = \frac{2}{3} \left(-\frac{1}{22} + \frac{1}{3}\right). \] ### Step 6: Simplify Calculating the expression: \[ -\frac{1}{22} + \frac{1}{3} = \frac{-3 + 22}{66} = \frac{19}{66}. \] So we have: \[ \frac{2}{3} \cdot \frac{19}{66} = \frac{38}{198} = \frac{19}{99}. \] ### Final Answer Thus, the value of the integral is \[ \frac{19}{99}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(4)^(9)(1)/(sqrt(x))dx

Find int_(4)^(9)sqrt(x)dx

int(sqrt(x)dx)/((30-x^((3)/(2)))^(2)

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

Evaluate the following integral: int_4^9(sqrt(x))/((30-x^(3/2))^2)dx

Evaluate: int4x^(3)sqrt(5-x^(2))dx

int_(4)^(9)(dx)/(sqrt(x^(3)))

int_(4)^(9)(dx)/(sqrt(x^(3)))

Evaluate: int(1)/(sqrt(4x^(2)-9))dx

Evaluate: int(x^2)/(sqrt(4-x^2))\ dx