Home
Class 12
MATHS
Evaluate : int(log|sin x|)/(tan x)dx...

Evaluate :
`int(log|sin x|)/(tan x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\log |\sin x|}{\tan x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log |\sin x| \). Then, we need to find \( dt \) in terms of \( dx \). ### Step 2: Differentiate \( t \) Differentiating \( t \) with respect to \( x \): \[ dt = \frac{1}{\sin x} \cdot \cos x \, dx = \frac{\cos x}{\sin x} \, dx = \cot x \, dx \] This implies: \[ dx = \frac{dt}{\cot x} = \frac{dt}{\frac{\cos x}{\sin x}} = \frac{\sin x}{\cos x} \, dt = \tan x \, dt \] ### Step 3: Rewrite the Integral Now substitute \( t \) and \( dx \) into the integral: \[ \int \frac{\log |\sin x|}{\tan x} \, dx = \int \frac{t}{\tan x} \cdot \tan x \, dt = \int t \, dt \] ### Step 4: Integrate Now, we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C \] ### Step 5: Substitute Back Now substitute back \( t = \log |\sin x| \): \[ \frac{(\log |\sin x|)^2}{2} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\log |\sin x|}{\tan x} \, dx = \frac{(\log |\sin x|)^2}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin(log x))/(x)dx

Evaluate: int(log((tan x)/(2)))/(sin x)dx

Evaluate int(log(csc x-cot x))/(sin x)dx

Evaluate: (i) int(sin2x)/(sin5x sin3x)dx (ii) int(1+cot x)/(x+log sin x)dx

Evaluate: int sin(log x)dx

Evaluate: int((log(log x))/(x)dx

Evaluate: int((log(log x))/(x)dx

Evaluate: int(dx)/(x+x log x)

Evaluate: (i) int((sin(log x))/(x)dx (ii) int(e^(m)tan(-1)x)/(1+x^(2))dx

Evaluate int (sin(log x))/(x)dx