Home
Class 12
MATHS
Evaluate : int sqrt(tan x) (1+ tan^(2...

Evaluate :
`int sqrt(tan x) (1+ tan^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \sqrt{\tan x} (1 + \tan^2 x) \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We know that \[ 1 + \tan^2 x = \sec^2 x. \] Thus, we can rewrite the integral as: \[ \int \sqrt{\tan x} \sec^2 x \, dx. \] ### Step 2: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, the derivative of \( \tan x \) is: \[ \frac{dt}{dx} = \sec^2 x \implies dx = \frac{dt}{\sec^2 x}. \] ### Step 3: Substitute in the integral Substituting \( t \) into the integral gives: \[ \int \sqrt{t} \sec^2 x \cdot \frac{dt}{\sec^2 x} = \int \sqrt{t} \, dt. \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt. \] Using the power rule for integration: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C, \] we have: \[ \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} + C = \frac{2}{3} t^{3/2} + C. \] ### Step 5: Substitute back for \( t \) Recalling that \( t = \tan x \), we substitute back: \[ \frac{2}{3} \tan^{3/2} x + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \sqrt{\tan x} (1 + \tan^2 x) \, dx = \frac{2}{3} \tan^{3/2} x + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int sqrt(tan x)dx

Evaluate: (i) int sqrt(tan x)(1+tan^(2)x)dx (ii) int{f(ax+b)^(n)}f'(ax+b)dx,n!=-1

int sqrt(tan x)*dx

int(2tan x)/(1+tan^(2)x)dx

Evaluate: int tan x sec^(2)x sqrt(1-tan^(2)x)dx

Evaluate: int(1)/(sqrt(tan^(-1)x)(1+x^(2)))dx

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

Evaluate: int(sqrt(tan x))/(sin x cos x)dx