Home
Class 12
MATHS
Evaluate : int(sin 2x)/((a+b cos x)^(...

Evaluate :
`int(sin 2x)/((a+b cos x)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sin 2x}{(a + b \cos x)^2} \, dx, \] we will follow these steps: ### Step 1: Simplify \(\sin 2x\) We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite the integral as: \[ \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} \, dx. \] ### Step 2: Use Substitution To simplify the integral further, we will use the substitution: \[ t = a + b \cos x. \] Now, we differentiate \(t\): \[ dt = -b \sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -\frac{1}{b} dt. \] ### Step 3: Express \(\cos x\) in terms of \(t\) From our substitution, we have: \[ \cos x = \frac{t - a}{b}. \] ### Step 4: Substitute into the Integral Now substituting \(t\) and \(\sin x \, dx\) into the integral, we get: \[ \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} \, dx = \int \frac{2 \left(-\frac{1}{b} dt\right) \left(\frac{t - a}{b}\right)}{t^2}. \] This simplifies to: \[ -\frac{2}{b^2} \int \frac{(t - a)}{t^2} \, dt. \] ### Step 5: Split the Integral We can split the integral: \[ -\frac{2}{b^2} \left( \int \frac{t}{t^2} \, dt - a \int \frac{1}{t^2} \, dt \right) = -\frac{2}{b^2} \left( \int \frac{1}{t} \, dt - a \int t^{-2} \, dt \right). \] ### Step 6: Integrate Now we integrate each term: 1. \(\int \frac{1}{t} \, dt = \ln |t|\). 2. \(\int t^{-2} \, dt = -\frac{1}{t}\). Thus, we have: \[ -\frac{2}{b^2} \left( \ln |t| + \frac{a}{t} \right) + C, \] where \(C\) is the constant of integration. ### Step 7: Substitute Back Now we substitute back \(t = a + b \cos x\): \[ -\frac{2}{b^2} \left( \ln |a + b \cos x| + \frac{a}{a + b \cos x} \right) + C. \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{2}{b^2} \ln |a + b \cos x| + \frac{2a}{b^2(a + b \cos x)} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(sin2x)/((a+b cos2x)^(2))dx (ii) int(log x^(2))/(x)dx

Evaluate: int(sin2x)/((a+b cos2x)^(2))dx

Evaluate: int(sin2x)/(a cos^(2)x+b sin^(2)x)dx

Evaluate: int(sin x)/(cos2x)dx

Evaluate: (i) int(sin2x)/(a cos^(2)x+b sin^(2)x)dx (ii) int(cos x)/(2+3sin x)dx

Evaluate: "int(sin^(2)x)/(1+cos x)dx

Evaluate: int(-sin x+2cos x)/(2sin x+cos x)dx

Evaluate: int(sin^(2)x)/(cos^(14)x)3dx

Evaluate: int(1-sin x)/(cos^(2)x)dx