Home
Class 12
MATHS
Evaluate : int(x^(2)-x+2)/(x^(2)+1)dx...

Evaluate :
`int(x^(2)-x+2)/(x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 - x + 2}{x^2 + 1} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can rewrite the numerator \( x^2 - x + 2 \) as follows: \[ x^2 - x + 2 = (x^2 + 1) + (1 - x). \] This allows us to express the integral as: \[ \int \frac{(x^2 + 1) + (1 - x)}{x^2 + 1} \, dx = \int \left( 1 + \frac{1 - x}{x^2 + 1} \right) \, dx. \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int 1 \, dx + \int \frac{1 - x}{x^2 + 1} \, dx. \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int 1 \, dx = x. \] ### Step 4: Evaluate the second integral Now we need to evaluate \[ \int \frac{1 - x}{x^2 + 1} \, dx. \] We can split this integral into two parts: \[ \int \frac{1}{x^2 + 1} \, dx - \int \frac{x}{x^2 + 1} \, dx. \] #### Step 4.1: Evaluate \(\int \frac{1}{x^2 + 1} \, dx\) This integral is a standard result: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x). \] #### Step 4.2: Evaluate \(\int \frac{x}{x^2 + 1} \, dx\) For this integral, we can use substitution. Let \[ u = x^2 + 1 \implies du = 2x \, dx \implies \frac{du}{2} = x \, dx. \] Thus, we have: \[ \int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |x^2 + 1| + C. \] ### Step 5: Combine the results Now we can combine all parts together: \[ \int \frac{x^2 - x + 2}{x^2 + 1} \, dx = x + \left( \tan^{-1}(x) - \frac{1}{2} \ln |x^2 + 1| \right) + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^2 - x + 2}{x^2 + 1} \, dx = x + \tan^{-1}(x) - \frac{1}{2} \ln(x^2 + 1) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(x^(2)+x+2)/((x-2)(x-1))dx

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

Evaluate : int (x^(2))/((x^(2) -1)(x^(2) +2)) dx

Evaluate: int(x^(2)+x+1)/(x^(2)-x)dx

Evaluate : int(x^(2))/(x(1+x^(2)))dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate : int(x^(2)+3x-1)/(2x)dx