Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(1+sinx)/(sin x(1+cosx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{1 + \sin x}{\sin x (1 + \cos x)} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ I = \int \frac{1 + \sin x}{\sin x (1 + \cos x)} \, dx = \int \frac{1}{\sin x (1 + \cos x)} \, dx + \int \frac{\sin x}{\sin x (1 + \cos x)} \, dx. \] This simplifies to: \[ I = \int \frac{1}{\sin x (1 + \cos x)} \, dx + \int \frac{1}{1 + \cos x} \, dx. \] ### Step 2: Simplify the First Integral For the first integral, we can use the identity \( \sin x = 2 \tan \frac{x}{2} \frac{1}{1 + \tan^2 \frac{x}{2}} \) and \( \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \). Let \( t = \tan \frac{x}{2} \). Then, we have: \[ \sin x = \frac{2t}{1 + t^2} \quad \text{and} \quad 1 + \cos x = \frac{2}{1 + t^2}. \] Substituting these into the integral: \[ \int \frac{1}{\sin x (1 + \cos x)} \, dx = \int \frac{1 + t^2}{2t} \cdot \frac{1 + t^2}{2} \, dx. \] ### Step 3: Change of Variable Using the substitution \( t = \tan \frac{x}{2} \), we differentiate to find \( dx \): \[ dx = \frac{2}{1 + t^2} dt. \] Substituting \( dx \) into the integral gives: \[ \int \frac{1 + t^2}{2t} \cdot \frac{1 + t^2}{2} \cdot \frac{2}{1 + t^2} dt = \int \frac{1 + t^2}{2t} dt. \] ### Step 4: Split the Integral Now we can split the integral: \[ \int \frac{1 + t^2}{2t} dt = \frac{1}{2} \int \frac{1}{t} dt + \frac{1}{2} \int t \, dt. \] ### Step 5: Evaluate the Integrals Evaluating these integrals gives: \[ \frac{1}{2} \log |t| + \frac{1}{4} t^2 + C. \] ### Step 6: Substitute Back Substituting back \( t = \tan \frac{x}{2} \): \[ I = \frac{1}{2} \log \left| \tan \frac{x}{2} \right| + \frac{1}{4} \tan^2 \frac{x}{2} + C. \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{2} \log \left| \tan \frac{x}{2} \right| + \frac{1}{4} \tan^2 \frac{x}{2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int (sinx)/(sin2x)dx

int(1+sinx)/(sinx(1+cosx))dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following integral: int_0^pi(sinx)/(sinx+cosx)dx

Evaluate the following integrals: int(x)/((1+sinx))dx

Evaluate the following integrals: int(dx)/((cosx-sinx))

Evaluate the following integrals: int(sin^(2)x)/((1+cosx)^(2))dx

Evaluate the following integrals: int (dx)/(1-sin^(2)x)

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following integrals: int (1-sinx )/(x+cos x) dx