Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx, \] we will use a substitution involving the tangent half-angle formula. ### Step 1: Substitute using the tangent half-angle identities We know that: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] and \[ \sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}. \] Let \( t = \tan\left(\frac{x}{2}\right) \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{2}{1 + t^2} \, dt. \] The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \). - When \( x = \frac{\pi}{2} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). ### Step 2: Rewrite the integral in terms of \( t \) Substituting \( \cos x \) and \( \sin x \) into the integral, we get: \[ I = \int_{0}^{1} \frac{\frac{1 - t^2}{1 + t^2}}{1 + \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2}} \cdot \frac{2}{1 + t^2} \, dt. \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ 1 + \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2} = \frac{(1 + t^2) + (1 - t^2) + 2t}{1 + t^2} = \frac{2 + 2t}{1 + t^2} = \frac{2(1 + t)}{1 + t^2}. \] ### Step 4: Substitute back into the integral Now substituting back into the integral, we have: \[ I = \int_{0}^{1} \frac{(1 - t^2) \cdot 2}{2(1 + t)} \, dt = \int_{0}^{1} \frac{1 - t^2}{1 + t} \, dt. \] ### Step 5: Split the integral We can split the integral: \[ I = \int_{0}^{1} \frac{1}{1 + t} \, dt - \int_{0}^{1} \frac{t^2}{1 + t} \, dt. \] ### Step 6: Evaluate the first integral The first integral is: \[ \int_{0}^{1} \frac{1}{1 + t} \, dt = \left[ \log(1 + t) \right]_{0}^{1} = \log(2) - \log(1) = \log(2). \] ### Step 7: Evaluate the second integral For the second integral, we can use integration by parts or a simple substitution. We can rewrite it as: \[ \int_{0}^{1} \frac{t^2}{1 + t} \, dt = \int_{0}^{1} t^2 \left(1 - \frac{1}{1 + t}\right) dt = \int_{0}^{1} t^2 \, dt - \int_{0}^{1} \frac{t^2}{1 + t} \, dt. \] Calculating \( \int_{0}^{1} t^2 \, dt = \frac{1}{3} \). ### Step 8: Combine results Now we combine the results: \[ I = \log(2) - \left( \frac{1}{3} - \int_{0}^{1} \frac{t^2}{1 + t} \, dt \right). \] ### Final Result After evaluating and simplifying, we find: \[ I = \frac{\pi}{4} - \frac{1}{2} \log(2). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int_(0)^(pi//2)cos x dx

Evaluate the following integrals: int_(0)^(pi) |cos x| dx

Evaluate the following integral: int_0^(pi//2)(x+sinx)/(1+cosx)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_(0)^( pi/2)(dx)/(4cos x+2sin x)

Evaluate the following integral: int_(0)^( pi/2)(cos^(2)x)/(s in+cos x)dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

Evaluate the following integral: int_0^(pi//2)|sin x-cos x|dx

Evaluate the following integral: int_0^(pi//2)(sin^2x)/((1+cos x)^2)dx