Home
Class 12
MATHS
Evaluate the following integrals as limi...

Evaluate the following integrals as limit of sums:
`int_(2)^(4)(2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{2}^{4} (2x + 1) \, dx \) using the limit of sums, we will follow these steps: ### Step 1: Define the Integral We start with the integral: \[ I = \int_{2}^{4} (2x + 1) \, dx \] ### Step 2: Set Up the Limit of Sums We will express the integral as a limit of Riemann sums. The formula for the definite integral can be expressed as: \[ I = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i^*) \Delta x \] where \( \Delta x = \frac{b - a}{n} \) and \( x_i^* = a + i \Delta x \). ### Step 3: Determine \( a \), \( b \), and \( \Delta x \) Here, \( a = 2 \), \( b = 4 \), and thus: \[ \Delta x = \frac{4 - 2}{n} = \frac{2}{n} \] ### Step 4: Determine \( x_i^* \) The points \( x_i^* \) can be defined as: \[ x_i^* = 2 + i \Delta x = 2 + i \left(\frac{2}{n}\right) = 2 + \frac{2i}{n} \] ### Step 5: Evaluate \( f(x_i^*) \) Now, we evaluate the function \( f(x) = 2x + 1 \) at \( x_i^* \): \[ f(x_i^*) = 2\left(2 + \frac{2i}{n}\right) + 1 = 4 + \frac{4i}{n} + 1 = 5 + \frac{4i}{n} \] ### Step 6: Set Up the Riemann Sum The Riemann sum can now be expressed as: \[ \sum_{i=0}^{n-1} f(x_i^*) \Delta x = \sum_{i=0}^{n-1} \left(5 + \frac{4i}{n}\right) \cdot \frac{2}{n} \] This expands to: \[ \sum_{i=0}^{n-1} \left(5 \cdot \frac{2}{n} + \frac{8i}{n^2}\right) = \frac{10}{n} \sum_{i=0}^{n-1} 1 + \frac{8}{n^2} \sum_{i=0}^{n-1} i \] ### Step 7: Calculate the Sums 1. The first sum: \[ \sum_{i=0}^{n-1} 1 = n \] 2. The second sum: \[ \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2} \] ### Step 8: Substitute Back into the Riemann Sum Substituting these sums back gives: \[ \frac{10}{n} \cdot n + \frac{8}{n^2} \cdot \frac{(n-1)n}{2} = 10 + \frac{8(n-1)}{2n} = 10 + \frac{4(n-1)}{n} \] ### Step 9: Take the Limit as \( n \to \infty \) Now we take the limit: \[ I = \lim_{n \to \infty} \left(10 + \frac{4(n-1)}{n}\right) = 10 + \lim_{n \to \infty} \left(4 - \frac{4}{n}\right) = 10 + 4 = 14 \] ### Final Result Thus, the value of the integral is: \[ \int_{2}^{4} (2x + 1) \, dx = 14 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sums: int_(0)^(1)e^(2-3x)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the following integrals as limit of sum: int_0^3(x+4)dx

Evaluate the following integrals as limit of sums : (i) int_(0)^(5)(x+1)dx (ii) int_(1)^(3)(2x+3)dx

Evaluate the following integrals as limit of sum: int_(-1)^1(x+3)dx

Evaluate the following integrals as limit of sum: int_2^3x^2dx

Evaluate the following integrals as limit of sums: int_(0)^(2)(x+4)dx( ii) int_(0)^(2)(2x+1)dx

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sum: int_0^2(x+3)dx

Evaluate the following integrals as limit of sum: int_3^5(2-x)dx