Home
Class 12
MATHS
Evaluate the following integrals as limi...

Evaluate the following integrals as limit of sums:
`int_(1)^(3)(3x^(2)-2x+4)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{3} (3x^2 - 2x + 4) \, dx \) as a limit of sums, we will follow these steps: ### Step 1: Define the integral and the function We have the integral \[ \int_{1}^{3} (3x^2 - 2x + 4) \, dx \] Let \( f(x) = 3x^2 - 2x + 4 \). ### Step 2: Determine the interval and the width of subintervals The limits of integration are \( a = 1 \) and \( b = 3 \). The width of each subinterval \( h \) is given by: \[ h = \frac{b - a}{n} = \frac{3 - 1}{n} = \frac{2}{n} \] ### Step 3: Set up the Riemann sum The Riemann sum for the integral can be expressed as: \[ \lim_{n \to \infty} \sum_{i=0}^{n-1} f(a + ih) \cdot h \] Substituting \( a = 1 \) and \( h = \frac{2}{n} \): \[ \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(1 + i \cdot \frac{2}{n}\right) \cdot \frac{2}{n} \] ### Step 4: Evaluate \( f\left(1 + i \cdot \frac{2}{n}\right) \) Now we calculate \( f\left(1 + i \cdot \frac{2}{n}\right) \): \[ f\left(1 + i \cdot \frac{2}{n}\right) = 3\left(1 + \frac{2i}{n}\right)^2 - 2\left(1 + \frac{2i}{n}\right) + 4 \] Calculating \( \left(1 + \frac{2i}{n}\right)^2 \): \[ \left(1 + \frac{2i}{n}\right)^2 = 1 + \frac{4i}{n} + \frac{4i^2}{n^2} \] Thus, \[ f\left(1 + i \cdot \frac{2}{n}\right) = 3\left(1 + \frac{4i}{n} + \frac{4i^2}{n^2}\right) - 2\left(1 + \frac{2i}{n}\right) + 4 \] Expanding this: \[ = 3 + \frac{12i}{n} + \frac{12i^2}{n^2} - 2 - \frac{4i}{n} + 4 \] Combining like terms: \[ = 5 + \frac{8i}{n} + \frac{12i^2}{n^2} \] ### Step 5: Substitute back into the Riemann sum Now substituting back into the Riemann sum: \[ \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(5 + \frac{8i}{n} + \frac{12i^2}{n^2}\right) \cdot \frac{2}{n} \] This can be separated into three sums: \[ = \lim_{n \to \infty} \left( \frac{2}{n} \sum_{i=0}^{n-1} 5 + \frac{2}{n} \sum_{i=0}^{n-1} \frac{8i}{n} + \frac{2}{n} \sum_{i=0}^{n-1} \frac{12i^2}{n^2} \right) \] ### Step 6: Evaluate each sum 1. The first sum: \[ \frac{2}{n} \sum_{i=0}^{n-1} 5 = \frac{2 \cdot 5(n)}{n} = 10 \] 2. The second sum: \[ \frac{2}{n} \sum_{i=0}^{n-1} \frac{8i}{n} = \frac{16}{n^2} \sum_{i=0}^{n-1} i = \frac{16}{n^2} \cdot \frac{(n-1)n}{2} \approx 8 \] 3. The third sum: \[ \frac{2}{n} \sum_{i=0}^{n-1} \frac{12i^2}{n^2} = \frac{24}{n^3} \sum_{i=0}^{n-1} i^2 = \frac{24}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} \approx 4 \] ### Step 7: Combine the results Combining these results: \[ 10 + 8 + 4 = 22 \] ### Final Result Thus, the value of the integral is: \[ \int_{1}^{3} (3x^2 - 2x + 4) \, dx = 22 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sum: int_(-1)^1(x+3)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)(3x^(2)+2x+1)dx

Evaluate the following integrals as limit of sums: int_(0)^(4)(3x^(2)+e^(2x))dx

Evaluate the following integrals as limit of sum: int_1^3(2x+3)dx

Evaluate the following integrals as limit of sum: int_1^3(3x-2)dx

Evaluate the following integrals as limit of sum: int_0^2(x+3)dx

Evaluate the following integrals as limit of sum: int_1^3(3x^2+1)dx

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)e^(2-3x)dx

Evaluate the following integrals as limit of sums: int_(2)^(4)(2x+1)dx