Home
Class 12
MATHS
Evaluate the following integrals as limi...

Evaluate the following integrals as limit of sums:
`int_(0)^(4)(3x^(2)+e^(2x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{0}^{4} (3x^{2} + e^{2x}) \, dx\) using the limit of sums, we will follow these steps: ### Step 1: Define the function and the interval We have the function \(f(x) = 3x^2 + e^{2x}\) and we want to evaluate the integral from \(a = 0\) to \(b = 4\). ### Step 2: Determine the width of each subinterval We divide the interval \([0, 4]\) into \(n\) equal parts. The width of each subinterval is given by: \[ h = \frac{b - a}{n} = \frac{4 - 0}{n} = \frac{4}{n} \] ### Step 3: Write the sum The Riemann sum for the integral can be expressed as: \[ \sum_{i=0}^{n-1} f(a + ih) \cdot h = \sum_{i=0}^{n-1} f\left(0 + i \cdot \frac{4}{n}\right) \cdot \frac{4}{n} \] This simplifies to: \[ \sum_{i=0}^{n-1} f\left(\frac{4i}{n}\right) \cdot \frac{4}{n} \] ### Step 4: Substitute the function into the sum Now, we substitute \(f\left(\frac{4i}{n}\right)\): \[ f\left(\frac{4i}{n}\right) = 3\left(\frac{4i}{n}\right)^2 + e^{2\left(\frac{4i}{n}\right)} = 3\frac{16i^2}{n^2} + e^{\frac{8i}{n}} \] Thus, the sum becomes: \[ \sum_{i=0}^{n-1} \left(3\frac{16i^2}{n^2} + e^{\frac{8i}{n}}\right) \cdot \frac{4}{n} \] This can be separated into two sums: \[ \frac{4}{n} \sum_{i=0}^{n-1} 3\frac{16i^2}{n^2} + \frac{4}{n} \sum_{i=0}^{n-1} e^{\frac{8i}{n}} \] ### Step 5: Simplify the sums The first sum is: \[ \frac{4 \cdot 48}{n^3} \sum_{i=0}^{n-1} i^2 = \frac{192}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} \approx \frac{192n^3}{6n^3} = 32 \quad \text{(as \(n \to \infty\))} \] The second sum is a geometric series: \[ \frac{4}{n} \sum_{i=0}^{n-1} e^{\frac{8i}{n}} \approx \frac{4}{n} \cdot \frac{1 - e^{8}}{1 - e^{\frac{8}{n}}} \approx 4 \cdot \frac{1 - e^{8}}{8} = \frac{4(1 - e^{8})}{8} = \frac{1 - e^{8}}{2} \] ### Step 6: Combine the results Combining both parts, we get: \[ \int_{0}^{4} (3x^{2} + e^{2x}) \, dx = 32 + \frac{1 - e^{8}}{2} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{4} (3x^{2} + e^{2x}) \, dx = 32 + \frac{1 - e^{8}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the following integrals as limit of sum: int_0^3(x+4)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)(3x^(2)+2x+1)dx

Evaluate the following integrals as limit of sum: int_0^2(x+3)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)e^(2-3x)dx

Evaluate the following integrals as limit of sums: int_(1)^(3)(3x^(2)-2x+4)dx

Evaluate the following integrals as limit of sums: int_(2)^(4)(2x+1)dx

Evaluate the following integrals as limit of sum: int_(-1)^1(x+3)dx

Evaluate the following integrals as limit of sum: int_0^2e^x dx