Home
Class 12
MATHS
Evaluate the following integrals as limi...

Evaluate the following integrals as limit of sums:
`int_(0)^(1)e^(2-3x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} e^{2 - 3x} \, dx \) using the limit of sums, we will follow these steps: ### Step 1: Define the integral as a limit of sums The integral can be expressed as: \[ \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x \] where \( \Delta x = \frac{b-a}{n} \) and \( x_i = a + i \Delta x \). ### Step 2: Identify \( a \), \( b \), and \( f(x) \) For our integral: - \( a = 0 \) - \( b = 1 \) - \( f(x) = e^{2 - 3x} \) ### Step 3: Calculate \( \Delta x \) \[ \Delta x = \frac{b - a}{n} = \frac{1 - 0}{n} = \frac{1}{n} \] ### Step 4: Express \( x_i \) The points \( x_i \) can be expressed as: \[ x_i = 0 + i \Delta x = \frac{i}{n} \] ### Step 5: Substitute into the sum Now, we can write the limit of sums: \[ \int_{0}^{1} e^{2 - 3x} \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} e^{2 - 3\left(\frac{i}{n}\right)} \cdot \frac{1}{n} \] This simplifies to: \[ = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} e^{2 - \frac{3i}{n}} \] ### Step 6: Factor out constants Factor out the constant \( e^2 \): \[ = e^2 \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} e^{-\frac{3i}{n}} \] ### Step 7: Recognize the sum as a Riemann sum The sum \( \frac{1}{n} \sum_{i=0}^{n-1} e^{-\frac{3i}{n}} \) approaches the integral \( \int_{0}^{1} e^{-3x} \, dx \) as \( n \to \infty \). ### Step 8: Evaluate the integral Now we need to evaluate: \[ \int_{0}^{1} e^{-3x} \, dx \] The antiderivative of \( e^{-3x} \) is: \[ -\frac{1}{3} e^{-3x} \] Thus, \[ \int_{0}^{1} e^{-3x} \, dx = \left[-\frac{1}{3} e^{-3x}\right]_{0}^{1} = -\frac{1}{3} (e^{-3} - e^{0}) = -\frac{1}{3} (e^{-3} - 1) = \frac{1 - e^{-3}}{3} \] ### Step 9: Combine results Now substituting back into our expression: \[ \int_{0}^{1} e^{2 - 3x} \, dx = e^2 \cdot \frac{1 - e^{-3}}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} e^{2 - 3x} \, dx = \frac{e^2 (1 - e^{-3})}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sum: int_0^2(2x+1)dx

Evaluate the following integrals as limit of sum: int_0^2(x+3)dx

Evaluate the following integrals as limit of sum: int_0^3(x+4)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the following integrals as limit of sums: int_(0)^(1)(3x^(2)+2x+1)dx

Evaluate the following integrals as limit of sums : (i) int_(0)^(5)(x+1)dx (ii) int_(1)^(3)(2x+3)dx

Evaluate the following integrals as limit of sum: int_0^2e^x dx

Evaluate the following integrals as limit of sum: int_0^2(x^2+1)dx

Evaluate the following integrals as limit of sums: int_(2)^(4)(2x+1)dx