Home
Class 12
MATHS
Evaluate the following integrals as limi...

Evaluate the following integrals as limit of sums:
`int_(0)^(1)(3x^(2)+2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} (3x^2 + 2x + 1) \, dx \) as a limit of sums, we can follow these steps: ### Step 1: Set up the limit of sums The integral can be expressed as a limit of sums using the formula: \[ \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(a + i \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n} \] In our case, \( a = 0 \), \( b = 1 \), and \( f(x) = 3x^2 + 2x + 1 \). ### Step 2: Determine \( \Delta x \) Here, \( \Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n} \). ### Step 3: Substitute into the sum We substitute \( x_i = a + i \Delta x = 0 + i \cdot \frac{1}{n} = \frac{i}{n} \) into the function: \[ f\left(\frac{i}{n}\right) = 3\left(\frac{i}{n}\right)^2 + 2\left(\frac{i}{n}\right) + 1 \] Thus, \[ f\left(\frac{i}{n}\right) = 3\frac{i^2}{n^2} + 2\frac{i}{n} + 1 \] ### Step 4: Write the Riemann sum The Riemann sum becomes: \[ \sum_{i=0}^{n-1} f\left(\frac{i}{n}\right) \cdot \Delta x = \sum_{i=0}^{n-1} \left(3\frac{i^2}{n^2} + 2\frac{i}{n} + 1\right) \cdot \frac{1}{n} \] This simplifies to: \[ \sum_{i=0}^{n-1} \left(3\frac{i^2}{n^3} + 2\frac{i}{n^2} + \frac{1}{n}\right) \] ### Step 5: Separate the sums We can separate the sums: \[ \frac{1}{n^3} \sum_{i=0}^{n-1} 3i^2 + \frac{1}{n^2} \sum_{i=0}^{n-1} 2i + \sum_{i=0}^{n-1} \frac{1}{n} \] ### Step 6: Use formulas for sums Using the formulas: - \( \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2} \) - \( \sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6} \) We can substitute these into our expression: \[ \frac{1}{n^3} \cdot 3 \cdot \frac{(n-1)n(2n-1)}{6} + \frac{1}{n^2} \cdot 2 \cdot \frac{(n-1)n}{2} + \frac{n}{n} \] ### Step 7: Simplify each term 1. For the first term: \[ \frac{3(n-1)(2n-1)}{6n} = \frac{(n-1)(2n-1)}{2n} \] 2. For the second term: \[ \frac{(n-1)}{n} = 1 - \frac{1}{n} \] 3. The third term is simply: \[ 1 \] ### Step 8: Combine and take the limit Combining these terms: \[ \frac{(n-1)(2n-1)}{2n} + 1 - \frac{1}{n} = \frac{2n^2 - 3n + 1}{2n} + 1 - \frac{1}{n} \] Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \left( \frac{2n^2 - 3n + 1}{2n} + 1 - \frac{1}{n} \right) = \lim_{n \to \infty} \left( n - \frac{3}{2} + \frac{1}{2n} + 1 - \frac{1}{n} \right) = 1 + 1 - \frac{3}{2} = 3 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} (3x^2 + 2x + 1) \, dx = 3 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals as limit of sums: int_(0)^(1)e^(2-3x)dx

Evaluate the following integrals as limit of sums: int_(0)^(4)(3x^(2)+e^(2x))dx

Evaluate the following integrals as limit of sums: int_(0)^(2)(x^(2)+3)dx

Evaluate the following integrals as limit of sums: int_(1)^(3)(3x^(2)-2x+4)dx

Evaluate the following integrals as limit of sum: int_0^2(2x+1)dx

Evaluate the following integrals as limit of sum: int_(-1)^1(x+3)dx

Evaluate the following integrals as limit of sum: int_0^2(x+3)dx

Evaluate the following integrals as limit of sum: int_0^2(x+4)dx

Evaluate the following integrals as limit of sum: int_0^3(x+4)dx

Evaluate the following integrals as limit of sum: int_0^1(3x^2+5x)dx