Home
Class 12
MATHS
int(0)^(pi//2) (2logsin x - log sin 2x) ...

`int_(0)^(pi//2) (2logsin x - log sin 2x) dx=`

Text Solution

Verified by Experts

The correct Answer is:
`pi/2 log. 1/2`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(2log sin x-log sin2x)dx

int_(0)^((pi)/(2))(2log cos x-log sin2x)dx

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

int_(0)^(pi//2)(2logcosx-logsin2x)\ dx=-(pi)/(2)log2

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx