Home
Class 12
MATHS
Let veca = 4hati + 5hatj - hatk, vecb = ...

Let `veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec c = 3hati + hatj- hatk.` Find a vector `vecd` which is perpendicular to both `vec a and vecb` and satisfying `vecd .vecc=21`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \vec{d} \) that is perpendicular to both \( \vec{a} \) and \( \vec{b} \) and satisfies \( \vec{d} \cdot \vec{c} = 21 \), we can follow these steps: ### Step 1: Define the vectors Given: - \( \vec{a} = 4\hat{i} + 5\hat{j} - \hat{k} \) - \( \vec{b} = \hat{i} - 4\hat{j} + 5\hat{k} \) - \( \vec{c} = 3\hat{i} + \hat{j} - \hat{k} \) Let \( \vec{d} = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Set up the equations for perpendicularity Since \( \vec{d} \) is perpendicular to \( \vec{a} \): \[ \vec{d} \cdot \vec{a} = 0 \implies (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (4\hat{i} + 5\hat{j} - \hat{k}) = 0 \] This gives: \[ 4x + 5y - z = 0 \quad \text{(Equation 1)} \] Since \( \vec{d} \) is also perpendicular to \( \vec{b} \): \[ \vec{d} \cdot \vec{b} = 0 \implies (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} - 4\hat{j} + 5\hat{k}) = 0 \] This gives: \[ x - 4y + 5z = 0 \quad \text{(Equation 2)} \] ### Step 3: Set up the equation for the dot product with \( \vec{c} \) We also have: \[ \vec{d} \cdot \vec{c} = 21 \implies (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (3\hat{i} + \hat{j} - \hat{k}) = 21 \] This gives: \[ 3x + y - z = 21 \quad \text{(Equation 3)} \] ### Step 4: Solve the system of equations Now we have three equations: 1. \( 4x + 5y - z = 0 \) (Equation 1) 2. \( x - 4y + 5z = 0 \) (Equation 2) 3. \( 3x + y - z = 21 \) (Equation 3) #### Step 4.1: Solve Equation 1 for \( z \) From Equation 1: \[ z = 4x + 5y \] #### Step 4.2: Substitute \( z \) into Equation 2 Substituting \( z \) into Equation 2: \[ x - 4y + 5(4x + 5y) = 0 \] This simplifies to: \[ x - 4y + 20x + 25y = 0 \implies 21x + 21y = 0 \implies x + y = 0 \implies y = -x \] #### Step 4.3: Substitute \( y \) into Equation 1 Substituting \( y = -x \) into Equation 1: \[ 4x + 5(-x) - z = 0 \implies 4x - 5x - z = 0 \implies -x - z = 0 \implies z = -x \] #### Step 4.4: Substitute \( y \) and \( z \) into Equation 3 Substituting \( y = -x \) and \( z = -x \) into Equation 3: \[ 3x + (-x) - (-x) = 21 \implies 3x - x + x = 21 \implies 3x = 21 \implies x = 7 \] ### Step 5: Find \( y \) and \( z \) Now substituting \( x = 7 \): \[ y = -x = -7, \quad z = -x = -7 \] ### Step 6: Write the vector \( \vec{d} \) Thus, the vector \( \vec{d} \) is: \[ \vec{d} = 7\hat{i} - 7\hat{j} - 7\hat{k} \] ### Final Answer \[ \vec{d} = 7\hat{i} - 7\hat{j} - 7\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Let vec a=4hati+5hatj-hatk, vecb = hati -4hatj+5hatk and vec c=3hati+hatj-hatk . Find a vector vec dwhich is perpendicular to both vec c and vec b and vec d.vec a=21

Let veca=hati+4hatj+2hatk, vecb=3hati-2hatj+7hatk and vecc= 2hati-hatj+3hatk. Find as vector vecd which is perpendicular to both a veca and vecb and satisfies vecc.vecd=15

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and vecc=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

Let veca=hati+4hatj+2hatk,vecb=3hati-2hatj+7hatk and veca=2hati-2hatj+4hatk . Find a vector vecd which perpendicular to both veca and vecb and vecc.vecd=15 .

Let veca=hati-hatj, vecb=hati-hatk and vecc=7hati-hatk. Find a vector hatd which is perpendicular to vectors veca and vecb and satisfies the condition vecc.vecd =1.

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=x hati+y hatj+z hatk, vecb=y hati+z hatj+x hatk, and vec c=z hati+x hatj+y hatk , then veca xx (vecb xx vec c) is :

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. The points A,B and C with position vectors 3 hati - y hatj + 2hatk, 5 ...

    Text Solution

    |

  2. If the sum of two unit vectors is a unit vector, prove that the mag...

    Text Solution

    |

  3. Let veca = 4hati + 5hatj - hatk, vecb = hati- 4 hatj + 5 hatk and vec ...

    Text Solution

    |

  4. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  5. If hata and hatb are unit vectors inclined at an angle theta then prov...

    Text Solution

    |

  6. If veca,vecb,vecc are mutually perpendicular vectors of equal magnitud...

    Text Solution

    |

  7. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  8. Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2...

    Text Solution

    |

  9. If veca, vecb and vecc are the position vectors of vertices A,B,C of a...

    Text Solution

    |

  10. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  11. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  12. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  13. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  14. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  15. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  16. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  17. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  18. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  19. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  20. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |