Home
Class 12
MATHS
If veca = hati + hatj + hatk, vecc = hat...

If `veca = hati + hatj + hatk, vecc = hatj - hatk` are given vectors, then find a vector `vecb` satisfying the equation `veca xx vecb = vecc and veca. vecb =3.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \(\vec{b}\) that satisfies the equations \(\vec{a} \times \vec{b} = \vec{c}\) and \(\vec{a} \cdot \vec{b} = 3\). Given the vectors: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{c} = \hat{j} - \hat{k} \] ### Step 1: Calculate \(\vec{a} \times \vec{c}\) To find \(\vec{b}\), we first compute the cross product \(\vec{a} \times \vec{c}\). \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{c} = \hat{i} \left(1 \cdot (-1) - 1 \cdot 1\right) - \hat{j} \left(1 \cdot (-1) - 1 \cdot 0\right) + \hat{k} \left(1 \cdot 1 - 1 \cdot 0\right) \] This simplifies to: \[ \vec{a} \times \vec{c} = \hat{i}(-1 - 1) - \hat{j}(-1) + \hat{k}(1) \] \[ = -2\hat{i} + \hat{j} + \hat{k} \] ### Step 2: Use the vector triple product identity We use the vector triple product identity: \[ \vec{a} \times \vec{b} = \vec{c} \implies \vec{b} = \frac{1}{|\vec{a}|^2}(\vec{c} \cdot \vec{a})\vec{a} - \frac{1}{|\vec{a}|^2}(\vec{a} \cdot \vec{b})\vec{c} \] ### Step 3: Calculate \(|\vec{a}|^2\) First, we compute the magnitude squared of \(\vec{a}\): \[ |\vec{a}|^2 = 1^2 + 1^2 + 1^2 = 3 \] ### Step 4: Substitute values into the equation Substituting \(|\vec{a}|^2\) and the known values into the equation: \[ \vec{a} \cdot \vec{b} = 3 \] We can express \(\vec{b}\) in terms of its components: \[ \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 5: Set up the equations From \(\vec{a} \cdot \vec{b} = 3\): \[ 1 \cdot x + 1 \cdot y + 1 \cdot z = 3 \implies x + y + z = 3 \] From \(\vec{a} \times \vec{b} = \vec{c}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating this determinant gives: \[ = \hat{i}(1z - 1y) - \hat{j}(1z - 1x) + \hat{k}(1y - 1x) \] \[ = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} \] Setting this equal to \(\vec{c} = \hat{j} - \hat{k}\): \[ (z - y) = 0 \quad \text{(1)} \] \[ -(z - x) = 1 \quad \text{(2)} \] \[ (y - x) = -1 \quad \text{(3)} \] ### Step 6: Solve the equations From equation (1), we have: \[ z = y \] Substituting \(z = y\) into equation (2): \[ -(y - x) = 1 \implies y - x = -1 \implies x = y + 1 \] Substituting \(x = y + 1\) into equation (3): \[ y - (y + 1) = -1 \implies -1 = -1 \quad \text{(True)} \] ### Step 7: Substitute back to find \(x, y, z\) Using \(x + y + z = 3\): \[ (y + 1) + y + y = 3 \implies 3y + 1 = 3 \implies 3y = 2 \implies y = \frac{2}{3} \] Thus, \[ z = y = \frac{2}{3}, \quad x = y + 1 = \frac{2}{3} + 1 = \frac{5}{3} \] ### Final Result The vector \(\vec{b}\) is: \[ \vec{b} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=vec0 and veca.vecb=3 is

Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be three given vectors. If vecr is a vector such that vecr xx veca=vecc xx veca and vecr*vecb=0 , then vecr*veca is equal to _______.

Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk . The unit vector of vecA - vecB is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vec=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca....

    Text Solution

    |

  2. if veca + vecb + vecc=0, then show that veca xx vecb = vecb xx vecc = ...

    Text Solution

    |

  3. If veca = hati + hatj + hatk, vecc = hatj - hatk are given vectors, th...

    Text Solution

    |

  4. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  5. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  6. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  7. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  8. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  9. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  10. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  11. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |

  12. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  13. If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-te...

    Text Solution

    |

  14. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  15. If the magnitude of the vector product of the vector hati+hatj+hatk wi...

    Text Solution

    |

  16. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  17. Find a vector of magnittude sqrt(171) which is perpendicular to both o...

    Text Solution

    |

  18. If a is a nonzero real number prove that the vectors overset(r) alph...

    Text Solution

    |

  19. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  20. Find a unit vector perpendicular to plane ABC when position vectors of...

    Text Solution

    |