Home
Class 12
MATHS
Find the altitude of a parallelepiped de...

Find the altitude of a parallelepiped determined by the vectors `veca, vecb and vecc` if the base is taken as parallelogram detemined by `veca and vecb and if veca = hati+ hatj + hatk, vecb = 2 hati + 4 hatj- hatk and vec c = hati + hatj + 3 hatk.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the altitude of a parallelepiped determined by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will follow these steps: ### Step 1: Identify the vectors Given: - \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) - \(\vec{b} = 2\hat{i} + 4\hat{j} - \hat{k}\) - \(\vec{c} = \hat{i} + \hat{j} + 3\hat{k}\) ### Step 2: Calculate the volume of the parallelepiped The volume \(V\) of the parallelepiped can be calculated using the scalar triple product: \[ V = \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 3: Calculate \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we set up the determinant: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (4 \cdot 3 - (-1) \cdot 1) - \hat{j} (2 \cdot 3 - (-1) \cdot 1) + \hat{k} (2 \cdot 1 - 4 \cdot 1) \] \[ = \hat{i} (12 + 1) - \hat{j} (6 + 1) + \hat{k} (2 - 4) \] \[ = 13\hat{i} - 7\hat{j} - 2\hat{k} \] ### Step 4: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we compute the dot product: \[ V = \vec{a} \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) = (1\hat{i} + 1\hat{j} + 1\hat{k}) \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) \] \[ = 1 \cdot 13 + 1 \cdot (-7) + 1 \cdot (-2) = 13 - 7 - 2 = 4 \] ### Step 5: Calculate the area of the base The area \(A\) of the base (parallelogram) formed by \(\vec{a}\) and \(\vec{b}\) is given by: \[ A = |\vec{a} \times \vec{b}| \] Calculating \(\vec{a} \times \vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \] \[ = \hat{i} (1 \cdot -1 - 1 \cdot 4) - \hat{j} (1 \cdot -1 - 1 \cdot 2) + \hat{k} (1 \cdot 4 - 1 \cdot 2) \] \[ = \hat{i} (-1 - 4) - \hat{j} (-1 - 2) + \hat{k} (4 - 2) \] \[ = -5\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 6: Calculate the magnitude of \(\vec{a} \times \vec{b}\) \[ A = \sqrt{(-5)^2 + 3^2 + 2^2} = \sqrt{25 + 9 + 4} = \sqrt{38} \] ### Step 7: Calculate the altitude The altitude \(h\) of the parallelepiped is given by: \[ h = \frac{V}{A} = \frac{4}{\sqrt{38}} \] ### Final Answer The altitude of the parallelepiped is: \[ h = \frac{4}{\sqrt{38}} \text{ units} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Find vecA xx vecB if vecA = hati - 2hatj + 4hatk and vecB = 2hati - hatj + 2hatk

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

Write the projection of vecb + vecc on veca where veca = 2 hati- 2 hatj +hatk, vecb = hati+ 2hatj- 2hatk and vecc = 2 hati- hatj+ 4 hatk

If veca = 3 hati -4 hatj and vecb =- 2 hati + 3 hatk, what is vecc=veca xx vecb ?

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Let, veca , vecb and vecc be three non zero vectors such that vecc is ...

    Text Solution

    |

  2. If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hat...

    Text Solution

    |

  3. Find the altitude of a parallelepiped determined by the vectors veca, ...

    Text Solution

    |

  4. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  5. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  6. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  7. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  8. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |

  9. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  10. If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-te...

    Text Solution

    |

  11. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  12. If the magnitude of the vector product of the vector hati+hatj+hatk wi...

    Text Solution

    |

  13. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  14. Find a vector of magnittude sqrt(171) which is perpendicular to both o...

    Text Solution

    |

  15. If a is a nonzero real number prove that the vectors overset(r) alph...

    Text Solution

    |

  16. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  17. Find a unit vector perpendicular to plane ABC when position vectors of...

    Text Solution

    |

  18. Find a unit vector in XY plane which makes an angle 45^(@) with the ve...

    Text Solution

    |

  19. Suppose veca = lamda hati - 7 hatj + 3 hatk, vecb = lamda hati + hatj ...

    Text Solution

    |

  20. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |