Home
Class 12
MATHS
Decompose the vector 6 hati - 3 hatj - 6...

Decompose the vector `6 hati - 3 hatj - 6 hatk` into vectors which are parallel and perpendicular to the vector `hati + hatj + hatk.`

Text Solution

AI Generated Solution

The correct Answer is:
To decompose the vector \( \mathbf{A} = 6 \hat{i} - 3 \hat{j} - 6 \hat{k} \) into components that are parallel and perpendicular to the vector \( \mathbf{B} = \hat{i} + \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Identify the vectors We have: - \( \mathbf{A} = 6 \hat{i} - 3 \hat{j} - 6 \hat{k} \) - \( \mathbf{B} = \hat{i} + \hat{j} + \hat{k} \) ### Step 2: Find the unit vector in the direction of \( \mathbf{B} \) To find the unit vector \( \hat{b} \) in the direction of \( \mathbf{B} \): \[ \hat{b} = \frac{\mathbf{B}}{|\mathbf{B}|} \] First, calculate the magnitude of \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] Thus, the unit vector \( \hat{b} \) is: \[ \hat{b} = \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \] ### Step 3: Find the projection of \( \mathbf{A} \) onto \( \hat{b} \) The projection \( \mathbf{C} \) of \( \mathbf{A} \) onto \( \hat{b} \) is given by: \[ \mathbf{C} = \left( \frac{\mathbf{A} \cdot \hat{b}}{|\hat{b}|^2} \right) \hat{b} \] Calculating \( \mathbf{A} \cdot \hat{b} \): \[ \mathbf{A} \cdot \hat{b} = (6 \hat{i} - 3 \hat{j} - 6 \hat{k}) \cdot \left( \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) \right) = \frac{1}{\sqrt{3}}(6 - 3 - 6) = \frac{-3}{\sqrt{3}} = -\sqrt{3} \] Since \( |\hat{b}|^2 = 1 \), we have: \[ \mathbf{C} = -\sqrt{3} \cdot \hat{b} = -\sqrt{3} \cdot \frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) = -(\hat{i} + \hat{j} + \hat{k}) = -\hat{i} - \hat{j} - \hat{k} \] ### Step 4: Find the perpendicular component \( \mathbf{D} \) The vector \( \mathbf{D} \) that is perpendicular to \( \hat{b} \) can be found using: \[ \mathbf{D} = \mathbf{A} - \mathbf{C} \] Substituting the values: \[ \mathbf{D} = (6 \hat{i} - 3 \hat{j} - 6 \hat{k}) - (-\hat{i} - \hat{j} - \hat{k}) = (6 + 1) \hat{i} + (-3 + 1) \hat{j} + (-6 + 1) \hat{k} = 7 \hat{i} - 2 \hat{j} - 5 \hat{k} \] ### Final Result Thus, the decomposition of the vector \( \mathbf{A} \) into components parallel and perpendicular to \( \mathbf{B} \) is: - Parallel component \( \mathbf{C} = -\hat{i} - \hat{j} - \hat{k} \) - Perpendicular component \( \mathbf{D} = 7 \hat{i} - 2 \hat{j} - 5 \hat{k} \)
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

The componant of vector 2 hati -3 hatj +2hatk perpendicular to the vector hati + -3 hatj + hatk is-

Find component of vector vec(a)=hati+hatj+3hatk in directions parallel to and perpendicular to vector vecb=hati+hatj .

A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2hatk and vecb = hati + hatj + hatk, and perpendicular to the vector vecc = hati + hatj +hatk is

A vector P=3hati-2hatj+ahatk is perpendicular to the vector Q=2hati+hatj -hatk, The value of a is

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

Find the value of m so that the vector 3 hati - 2hatj +hatk is perpendicular to the vector. 2hati +6hatj +m hatk .

Show that the vector vec(A) = hati +hatj +hatk is perpendicular to the vector vec(B) = - hati - hatj +2hatk .

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  2. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  3. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  4. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  5. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |

  6. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  7. If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-te...

    Text Solution

    |

  8. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  9. If the magnitude of the vector product of the vector hati+hatj+hatk wi...

    Text Solution

    |

  10. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  11. Find a vector of magnittude sqrt(171) which is perpendicular to both o...

    Text Solution

    |

  12. If a is a nonzero real number prove that the vectors overset(r) alph...

    Text Solution

    |

  13. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  14. Find a unit vector perpendicular to plane ABC when position vectors of...

    Text Solution

    |

  15. Find a unit vector in XY plane which makes an angle 45^(@) with the ve...

    Text Solution

    |

  16. Suppose veca = lamda hati - 7 hatj + 3 hatk, vecb = lamda hati + hatj ...

    Text Solution

    |

  17. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  18. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  19. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  20. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1...

    Text Solution

    |