Home
Class 12
MATHS
If [veca vecbvecc]=2 find the volume of ...

If `[veca vecbvecc]=2` find the volume of the parallelepiped whose co-teminus edges are `2veca +vecb, 2 vecb + vecc, 2 vecc + veca.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped whose co-terminus edges are given as \(2\vec{a} + \vec{b}\), \(2\vec{b} + \vec{c}\), and \(2\vec{c} + \vec{a}\), we will use the scalar triple product formula. The volume \(V\) of a parallelepiped formed by vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] ### Step 1: Identify the vectors The vectors corresponding to the edges of the parallelepiped are: - \(\vec{u} = 2\vec{a} + \vec{b}\) - \(\vec{v} = 2\vec{b} + \vec{c}\) - \(\vec{w} = 2\vec{c} + \vec{a}\) ### Step 2: Compute the scalar triple product We need to compute the scalar triple product \( \vec{u} \cdot (\vec{v} \times \vec{w}) \). \[ \vec{v} \times \vec{w} = (2\vec{b} + \vec{c}) \times (2\vec{c} + \vec{a}) \] Using the distributive property of the cross product: \[ \vec{v} \times \vec{w} = 2\vec{b} \times 2\vec{c} + 2\vec{b} \times \vec{a} + \vec{c} \times 2\vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we can simplify: \[ \vec{v} \times \vec{w} = 4(\vec{b} \times \vec{c}) + 2(\vec{b} \times \vec{a}) + \vec{c} \times \vec{a} \] ### Step 3: Substitute back into the scalar triple product Now substitute \(\vec{v} \times \vec{w}\) into the scalar triple product: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = (2\vec{a} + \vec{b}) \cdot \left(4(\vec{b} \times \vec{c}) + 2(\vec{b} \times \vec{a}) + \vec{c} \times \vec{a}\right) \] ### Step 4: Distribute the dot product Now we distribute the dot product: \[ = 2\vec{a} \cdot (4(\vec{b} \times \vec{c})) + 2\vec{a} \cdot (2(\vec{b} \times \vec{a})) + 2\vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (4(\vec{b} \times \vec{c})) + \vec{b} \cdot (2(\vec{b} \times \vec{a})) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] ### Step 5: Simplify using properties of the dot and cross products Using the properties of the dot product (where the dot product of a vector with a cross product involving itself is zero): - \( \vec{a} \cdot (\vec{b} \times \vec{a}) = 0 \) - \( \vec{b} \cdot (\vec{b} \times \vec{c}) = 0 \) Thus, we can simplify: \[ = 8(\vec{a} \cdot (\vec{b} \times \vec{c})) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] ### Step 6: Substitute the known value Given that \([\vec{a} \vec{b} \vec{c}] = 2\): \[ = 8 \cdot 2 + 0 = 16 \] ### Step 7: Calculate the volume The volume \(V\) is: \[ V = |16| = 16 \] ### Final Answer The volume of the parallelepiped is \(16\) cubic units. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

If [(veca,vecb,vecc)]=3 , then the volume (in cubic units) of the parallelopiped with 2veca+vecb,2vecb+vecc and 2vecc+veca as coterminous edges is

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  2. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  3. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  4. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  5. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |

  6. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  7. If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-te...

    Text Solution

    |

  8. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  9. If the magnitude of the vector product of the vector hati+hatj+hatk wi...

    Text Solution

    |

  10. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  11. Find a vector of magnittude sqrt(171) which is perpendicular to both o...

    Text Solution

    |

  12. If a is a nonzero real number prove that the vectors overset(r) alph...

    Text Solution

    |

  13. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  14. Find a unit vector perpendicular to plane ABC when position vectors of...

    Text Solution

    |

  15. Find a unit vector in XY plane which makes an angle 45^(@) with the ve...

    Text Solution

    |

  16. Suppose veca = lamda hati - 7 hatj + 3 hatk, vecb = lamda hati + hatj ...

    Text Solution

    |

  17. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  18. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  19. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  20. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1...

    Text Solution

    |