Home
Class 12
MATHS
Find a unit vector perpendicular to plan...

Find a unit vector perpendicular to plane ABC when position vectors of A,B,C are `3 hati - hatj + 2hatk, hati - hatj- 3hatk and 4 hati - 3 hatj + hatk` respectively.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector perpendicular to the plane formed by the points A, B, and C with given position vectors, we can follow these steps: ### Step 1: Identify the position vectors The position vectors of points A, B, and C are given as: - \( \vec{A} = 3\hat{i} - \hat{j} + 2\hat{k} \) - \( \vec{B} = \hat{i} - \hat{j} - 3\hat{k} \) - \( \vec{C} = 4\hat{i} - 3\hat{j} + \hat{k} \) ### Step 2: Find the vectors \( \vec{BA} \) and \( \vec{BC} \) To find the vector \( \vec{BA} \): \[ \vec{BA} = \vec{A} - \vec{B} = (3\hat{i} - \hat{j} + 2\hat{k}) - (\hat{i} - \hat{j} - 3\hat{k}) \] Calculating this gives: \[ \vec{BA} = (3 - 1)\hat{i} + (-1 + 1)\hat{j} + (2 + 3)\hat{k} = 2\hat{i} + 0\hat{j} + 5\hat{k} = 2\hat{i} + 5\hat{k} \] To find the vector \( \vec{BC} \): \[ \vec{BC} = \vec{C} - \vec{B} = (4\hat{i} - 3\hat{j} + \hat{k}) - (\hat{i} - \hat{j} - 3\hat{k}) \] Calculating this gives: \[ \vec{BC} = (4 - 1)\hat{i} + (-3 + 1)\hat{j} + (1 + 3)\hat{k} = 3\hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 3: Find the cross product \( \vec{D} = \vec{BA} \times \vec{BC} \) The cross product can be calculated using the determinant: \[ \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 5 \\ 3 & -2 & 4 \end{vmatrix} \] Calculating this determinant: \[ \vec{D} = \hat{i} \begin{vmatrix} 0 & 5 \\ -2 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 5 \\ 3 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 0 \\ 3 & -2 \end{vmatrix} \] Calculating each of the minors: - For \( \hat{i} \): \( 0 \cdot 4 - (-2) \cdot 5 = 0 + 10 = 10 \) - For \( \hat{j} \): \( 2 \cdot 4 - 3 \cdot 5 = 8 - 15 = -7 \) (but we take the negative, so it becomes \( +7 \)) - For \( \hat{k} \): \( 2 \cdot (-2) - 3 \cdot 0 = -4 - 0 = -4 \) Thus, we have: \[ \vec{D} = 10\hat{i} + 7\hat{j} - 4\hat{k} \] ### Step 4: Find the magnitude of \( \vec{D} \) The magnitude of \( \vec{D} \) is given by: \[ |\vec{D}| = \sqrt{(10)^2 + (7)^2 + (-4)^2} = \sqrt{100 + 49 + 16} = \sqrt{165} \] ### Step 5: Find the unit vector The unit vector \( \hat{n} \) in the direction of \( \vec{D} \) is given by: \[ \hat{n} = \frac{\vec{D}}{|\vec{D}|} = \frac{10\hat{i} + 7\hat{j} - 4\hat{k}}{\sqrt{165}} \] ### Final Answer The unit vector perpendicular to the plane ABC is: \[ \hat{n} = \frac{10\hat{i} + 7\hat{j} - 4\hat{k}}{\sqrt{165}} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARKS QUESTIONS|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

A unit vector perpendicular to the plane passing through the points whose position vectors are hati-hatj+2hatk, 2hati-hatk and 2hati+hatk is

Find a unit vector perpendicular to each one of the vectors vec a =4hati -hatj +3hatk and vecb =3 hati +2hatj -hatk

The position vectors of vertices of a DeltaABC are 4hati - 2 hatj , hati + 4hatj - 3hatk and -hati + 5hatj + hatk respectively , then angleABC is equal to

Show that the points A,B and C having position vectors (hati + 2hatj + 7hatk),(2hati + 6hatj + 3hatk) , and (3hati + 10 hatj - 3hatk) respectively, are collinear.

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

CBSE COMPLEMENTARY MATERIAL-VECTORS -FOUR MARKS QUESTIONS
  1. Prove that the four points (4hati + 5 hatj+hatk), - (hatj +hatk),(3hat...

    Text Solution

    |

  2. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  3. Decompose the vector 6 hati - 3 hatj - 6 hatk into vectors which are p...

    Text Solution

    |

  4. If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, v...

    Text Solution

    |

  5. If veca, vecb and vecc are three non zero vectors such that veca xx v...

    Text Solution

    |

  6. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  7. If [veca vecbvecc]=2 find the volume of the parallelepiped whose co-te...

    Text Solution

    |

  8. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  9. If the magnitude of the vector product of the vector hati+hatj+hatk wi...

    Text Solution

    |

  10. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  11. Find a vector of magnittude sqrt(171) which is perpendicular to both o...

    Text Solution

    |

  12. If a is a nonzero real number prove that the vectors overset(r) alph...

    Text Solution

    |

  13. If with reference to a right handed system of mutually perpendicula...

    Text Solution

    |

  14. Find a unit vector perpendicular to plane ABC when position vectors of...

    Text Solution

    |

  15. Find a unit vector in XY plane which makes an angle 45^(@) with the ve...

    Text Solution

    |

  16. Suppose veca = lamda hati - 7 hatj + 3 hatk, vecb = lamda hati + hatj ...

    Text Solution

    |

  17. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  18. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  19. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  20. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1...

    Text Solution

    |