Home
Class 12
MATHS
If x satisfies the inequality (tan^-1x)^...

If x satisfies the inequality `(tan^-1x)^2+3(tan^-1x)-4gt0` , then the complete set of values of x is

A

`(-tan4,pi/4)`

B

`(oo,tan4)cup(pi/4,oo)`

C

`(tan1,oo)`

D

`(tan4,tan1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((\tan^{-1} x)^2 + 3(\tan^{-1} x) - 4 > 0\), we will follow these steps: ### Step 1: Substitute \(\tan^{-1} x\) with a variable Let \(y = \tan^{-1} x\). Then, the inequality becomes: \[ y^2 + 3y - 4 > 0 \] ### Step 2: Factor the quadratic expression We need to factor the quadratic expression \(y^2 + 3y - 4\). We can look for two numbers that multiply to \(-4\) (the constant term) and add to \(3\) (the coefficient of \(y\)). The numbers \(4\) and \(-1\) work: \[ y^2 + 4y - 1y - 4 = (y + 4)(y - 1) \] Thus, we rewrite the inequality as: \[ (y + 4)(y - 1) > 0 \] ### Step 3: Determine the critical points The critical points from the factors are: \[ y + 4 = 0 \quad \Rightarrow \quad y = -4 \] \[ y - 1 = 0 \quad \Rightarrow \quad y = 1 \] ### Step 4: Test intervals We will test the intervals determined by the critical points \(-4\) and \(1\): 1. \(y < -4\) 2. \(-4 < y < 1\) 3. \(y > 1\) - For \(y < -4\) (e.g., \(y = -5\)): \[ (-5 + 4)(-5 - 1) = (-1)(-6) = 6 > 0 \quad \text{(True)} \] - For \(-4 < y < 1\) (e.g., \(y = 0\)): \[ (0 + 4)(0 - 1) = (4)(-1) = -4 < 0 \quad \text{(False)} \] - For \(y > 1\) (e.g., \(y = 2\)): \[ (2 + 4)(2 - 1) = (6)(1) = 6 > 0 \quad \text{(True)} \] ### Step 5: Combine results The inequality \((y + 4)(y - 1) > 0\) holds for: 1. \(y < -4\) 2. \(y > 1\) ### Step 6: Convert back to \(x\) Now we convert back to \(x\) using \(y = \tan^{-1} x\): 1. For \(y < -4\): \(\tan^{-1} x < -4\) is not possible since \(\tan^{-1} x\) has a range of \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). 2. For \(y > 1\): \(\tan^{-1} x > 1\) implies: \[ x > \tan(1) \] Since \(\tan(1) \approx 1.5574\), we conclude: \[ x > \tan(1) \] ### Final Solution The complete set of values of \(x\) that satisfy the inequality is: \[ x > \tan(1) \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 22

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Solve the inequality (tan^(-1)x)^(2)-4tan^(-1)x+3>0 for x.

The solution of the inequality (tan^(-1)x)^(2)-3tan^(-1)x+2>=0 is

The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 is

If x in(0,(pi)/(2)) satisfies the inequality [tan x-sqrt(3)|+|4sin^(2)x-3|+|tan(tan^(-1)x)-(pi)/(3)]<=0 then the value of tan(cot^(-1)((sqrt(2))/(30x)cos((3x)/(4)))]*[ Note : [.] denotes greatest integer function.]

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value of (b-a) is :

Q The value of x satisfying the inequality [tan^(-1)x]^(2)-2[tan^(-1)x]-3<=0 where [.] represents greatest integer function,then x varepsilon

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value (b, -a) is :

The set of all x satisfying the inequality (4x-1)/(3x+1)ge1

The inequality x^(2)-3x gt tan^(-1) x is ture in

NTA MOCK TESTS-NTA JEE MOCK TEST 25-MATHEMATICS
  1. If any tangent to the ellipse 25x^(2)+9y^2=225 meets the coordinate ax...

    Text Solution

    |

  2. If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!) then the value of m + n is

    Text Solution

    |

  3. There are 10 seats in the first row of a theatre of which 4 are to be ...

    Text Solution

    |

  4. Let the curve y = f (x) satisfies the equation (dy)/(dx)=1-1/x^2 and ...

    Text Solution

    |

  5. If a function F: RrarrR is defined as f(x)=int(x^8+4)/(x^4-2x^2+2)dx ...

    Text Solution

    |

  6. Six fair dice are rolled . The probability that the product of the num...

    Text Solution

    |

  7. If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the c...

    Text Solution

    |

  8. Let 2a+2b+c=0 , then the equation of the straight line ax + by + c = 0...

    Text Solution

    |

  9. If x,|x+a|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  10. The difference between the greatest and the least possible value of th...

    Text Solution

    |

  11. The value of int0^(12pi) ([sint]+[-sint])dt is equal to (where [.] de...

    Text Solution

    |

  12. For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

    Text Solution

    |

  13. Find the equation of the plane containing the lines 2x-y+z-3=0,3x+y+z=...

    Text Solution

    |

  14. If vecma,vecmband vecmc are 3 units vectors such that vecma.vecmb= ve...

    Text Solution

    |

  15. Let the points A lies on 3x-4y+1=0, the point B lines on 4 x + 3 y - 7...

    Text Solution

    |

  16. Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),...

    Text Solution

    |

  17. Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):...

    Text Solution

    |

  18. If S=sum(r=1)^(80)(r)/((r^4+r^2+1)) , then the value of (6481s)/(1000...

    Text Solution

    |

  19. If the equation of the tangent at the point P(3,4) on the parabola who...

    Text Solution

    |

  20. In the figure PQ PO1 and O1Q are the diameters of semicircles C1,C2 an...

    Text Solution

    |