Home
Class 12
MATHS
Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}]...

Let `A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}]` , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of matrices A and B from the given equations and then calculate the trace of both matrices to find \( \text{tr}(A) - \text{tr}(B) \). ### Step 1: Write down the equations We have the following equations: 1. \( A + 2B = \begin{pmatrix} 2 & 4 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 5 \end{pmatrix} \) 2. \( 2A - B = \begin{pmatrix} 6 & -2 & 4 \\ 6 & 1 & 5 \\ 6 & 3 & 4 \end{pmatrix} \) ### Step 2: Multiply the first equation by 2 To eliminate \( B \), we can manipulate the equations. Multiply the first equation by 2: \[ 2(A + 2B) = 2 \begin{pmatrix} 2 & 4 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 5 \end{pmatrix} \] This gives: \[ 2A + 4B = \begin{pmatrix} 4 & 8 & 0 \\ 12 & -6 & 6 \\ -10 & 6 & 10 \end{pmatrix} \] ### Step 3: Add the two equations Now we can add the modified first equation to the second equation: \[ (2A + 4B) + (2A - B) = \begin{pmatrix} 4 & 8 & 0 \\ 12 & -6 & 6 \\ -10 & 6 & 10 \end{pmatrix} + \begin{pmatrix} 6 & -2 & 4 \\ 6 & 1 & 5 \\ 6 & 3 & 4 \end{pmatrix} \] This simplifies to: \[ 4A + 3B = \begin{pmatrix} 10 & 6 & 4 \\ 18 & -5 & 11 \\ -4 & 9 & 14 \end{pmatrix} \] ### Step 4: Solve for B Now, we can isolate \( B \) by rearranging the equation: \[ 3B = \begin{pmatrix} 10 & 6 & 4 \\ 18 & -5 & 11 \\ -4 & 9 & 14 \end{pmatrix} - 4A \] We need to express \( A \) in terms of \( B \) from the first equation: \[ A = \begin{pmatrix} 2 & 4 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 5 \end{pmatrix} - 2B \] ### Step 5: Substitute A back into the equation for B Substituting \( A \) into the equation for \( B \): \[ 3B = \begin{pmatrix} 10 & 6 & 4 \\ 18 & -5 & 11 \\ -4 & 9 & 14 \end{pmatrix} - 4\left(\begin{pmatrix} 2 & 4 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 5 \end{pmatrix} - 2B\right) \] This will yield a new equation in terms of \( B \). ### Step 6: Solve for A and B After solving the equations, we find: \[ A = \begin{pmatrix} 14/5 & -1/5 & 13/5 \\ 18/5 & -1/5 & 13/5 \\ 7/5 & 9/5 & 13/5 \end{pmatrix} \] \[ B = \begin{pmatrix} -2/5 & 10/5 & -4/5 \\ 6/5 & -7/5 & 1/5 \\ -16/5 & 3/5 & 6/5 \end{pmatrix} \] ### Step 7: Calculate the traces Now we calculate the traces: \[ \text{tr}(A) = \frac{14}{5} + \frac{-1}{5} + \frac{13}{5} = \frac{26}{5} \] \[ \text{tr}(B) = \frac{-2}{5} + \frac{10}{5} + \frac{-4}{5} = \frac{4}{5} \] ### Step 8: Find \( \text{tr}(A) - \text{tr}(B) \) Now we can find: \[ \text{tr}(A) - \text{tr}(B) = \frac{26}{5} - \frac{4}{5} = \frac{22}{5} \] ### Final Answer Thus, \( \text{tr}(A) - \text{tr}(B) = \frac{22}{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 22

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

For xgt 0. " let A"=[(x+(1)/(x),0,0),(0,1//x,0),(0,0,12)], B=[((x)/(6(x^(2)+1)),0,0),(0,(x)/(4),0),(0,0,(1)/(36)] be two matrices and C=AB+(AB)^(2)+….+(AB)^(n). Then, Tr(lim_(nrarroo)C) is equal to (where Tr(A) is the trace of the matrix A i.e. the sum of the principle diagonal elements of A)

"If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B

If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)] , then tr(Aadj(adjA)) is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

If 2A+B=[(0,0,3),(10,1,9),(-1,4,0)] and A-2B=[(0,-5,9),(-5,3,2),(-3,2,0)] Find the value of (t_r(A)-t_r(B))

Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)] , where a, b, c are positive integers. If tr(A)=7 , then the greatest value of |A| is (where tr (A) denotes the trace of matric A i.e. the sum of principal diagonal elements of matrix A)

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A-2B={:[(3,6),(7,6)]:}andA-3B={:[(2,6),(7,5)]:} , then the matrix A is

Let M be a square matix of order 3 whose elements are real number and adj(adj M) = [(36,0,-4),(0,6,0),(0,3,6)] , then the absolute value of Tr(M) is [Here, adj P denotes adjoint matrix of P and T_(r) (P) denotes trace of matrix P i.e., sum of all principal diagonal elements of matrix P]

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

NTA MOCK TESTS-NTA JEE MOCK TEST 25-MATHEMATICS
  1. If any tangent to the ellipse 25x^(2)+9y^2=225 meets the coordinate ax...

    Text Solution

    |

  2. If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!) then the value of m + n is

    Text Solution

    |

  3. There are 10 seats in the first row of a theatre of which 4 are to be ...

    Text Solution

    |

  4. Let the curve y = f (x) satisfies the equation (dy)/(dx)=1-1/x^2 and ...

    Text Solution

    |

  5. If a function F: RrarrR is defined as f(x)=int(x^8+4)/(x^4-2x^2+2)dx ...

    Text Solution

    |

  6. Six fair dice are rolled . The probability that the product of the num...

    Text Solution

    |

  7. If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the c...

    Text Solution

    |

  8. Let 2a+2b+c=0 , then the equation of the straight line ax + by + c = 0...

    Text Solution

    |

  9. If x,|x+a|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  10. The difference between the greatest and the least possible value of th...

    Text Solution

    |

  11. The value of int0^(12pi) ([sint]+[-sint])dt is equal to (where [.] de...

    Text Solution

    |

  12. For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

    Text Solution

    |

  13. Find the equation of the plane containing the lines 2x-y+z-3=0,3x+y+z=...

    Text Solution

    |

  14. If vecma,vecmband vecmc are 3 units vectors such that vecma.vecmb= ve...

    Text Solution

    |

  15. Let the points A lies on 3x-4y+1=0, the point B lines on 4 x + 3 y - 7...

    Text Solution

    |

  16. Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),...

    Text Solution

    |

  17. Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):...

    Text Solution

    |

  18. If S=sum(r=1)^(80)(r)/((r^4+r^2+1)) , then the value of (6481s)/(1000...

    Text Solution

    |

  19. If the equation of the tangent at the point P(3,4) on the parabola who...

    Text Solution

    |

  20. In the figure PQ PO1 and O1Q are the diameters of semicircles C1,C2 an...

    Text Solution

    |