Home
Class 12
MATHS
If S=sum(r=1)^(80)(r)/((r^4+r^2+1)) , t...

If `S=sum_(r=1)^(80)(r)/((r^4+r^2+1))` , then the value of `(6481s)/(1000)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \[ S = \sum_{r=1}^{80} \frac{r}{r^4 + r^2 + 1} \] and then find the value of \(\frac{6481S}{1000}\). ### Step 1: Simplifying the Denominator The denominator can be rewritten: \[ r^4 + r^2 + 1 = (r^2 + 1)^2 - r^2 \] This is a difference of squares, which can be factored as: \[ (r^2 + 1 - r)(r^2 + 1 + r) = (r^2 - r + 1)(r^2 + r + 1) \] ### Step 2: Rewrite the Sum Now we can rewrite the sum \(S\): \[ S = \sum_{r=1}^{80} \frac{r}{(r^2 - r + 1)(r^2 + r + 1)} \] ### Step 3: Partial Fraction Decomposition We can use partial fractions to separate the terms: \[ \frac{r}{(r^2 - r + 1)(r^2 + r + 1)} = \frac{A}{r^2 - r + 1} + \frac{B}{r^2 + r + 1} \] Multiplying through by the denominator: \[ r = A(r^2 + r + 1) + B(r^2 - r + 1) \] ### Step 4: Solve for A and B Expanding the right-hand side: \[ r = (A + B)r^2 + (A - B)r + (A + B) \] Setting coefficients equal gives us a system of equations: 1. \(A + B = 0\) (coefficient of \(r^2\)) 2. \(A - B = 1\) (coefficient of \(r\)) 3. \(A + B = 0\) (constant term) From the first equation, \(B = -A\). Substituting into the second equation: \[ A - (-A) = 1 \implies 2A = 1 \implies A = \frac{1}{2}, B = -\frac{1}{2} \] ### Step 5: Rewrite S Now we can rewrite \(S\): \[ S = \sum_{r=1}^{80} \left( \frac{1/2}{r^2 - r + 1} - \frac{1/2}{r^2 + r + 1} \right) \] This simplifies to: \[ S = \frac{1}{2} \sum_{r=1}^{80} \left( \frac{1}{r^2 - r + 1} - \frac{1}{r^2 + r + 1} \right) \] ### Step 6: Telescoping Series Notice that this is a telescoping series. Most terms will cancel out. Evaluating the first few and the last few terms will help us find the remaining terms. ### Step 7: Evaluate the Remaining Terms The first term when \(r=1\) is: \[ \frac{1}{1^2 - 1 + 1} = 1 \] The last term when \(r=80\) is: \[ \frac{1}{80^2 + 80 + 1} = \frac{1}{6481} \] Thus, we can find \(S\): \[ S = \frac{1}{2} \left( 1 - \frac{1}{6481} \right) = \frac{1}{2} \left( \frac{6480}{6481} \right) = \frac{6480}{12962} \] ### Step 8: Calculate \(\frac{6481S}{1000}\) Now substituting \(S\) into \(\frac{6481S}{1000}\): \[ \frac{6481 \cdot \frac{6480}{12962}}{1000} = \frac{6481 \cdot 6480}{12962000} \] Calculating this gives: \[ = \frac{6481 \cdot 6480}{12962000} = 3.24 \] ### Final Answer Thus, the value of \(\frac{6481S}{1000}\) is: \[ \boxed{3.24} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 22

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 27

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(10)r.r! is

If sum_(r = 1)^(oo) (1)/((2r - 1)^2) = (pi^2)/(8) then the value of sum_(r = 1)^(oo) (1)/(r^2) is

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

(sum_(r=1)^(n)r^(4))/(sum_(r=1)^(n)r^(2)) is equal to

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

If T_(r)=(1)/(log_(2^r)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :

If sum_(r=1)^(n)t_(r)=(1)/(4)n(n+1)(n+2)(n+3) then value of (1)/(sum_(r=1)^(oo)((1)/(t_(r)))) is

NTA MOCK TESTS-NTA JEE MOCK TEST 25-MATHEMATICS
  1. If any tangent to the ellipse 25x^(2)+9y^2=225 meets the coordinate ax...

    Text Solution

    |

  2. If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!) then the value of m + n is

    Text Solution

    |

  3. There are 10 seats in the first row of a theatre of which 4 are to be ...

    Text Solution

    |

  4. Let the curve y = f (x) satisfies the equation (dy)/(dx)=1-1/x^2 and ...

    Text Solution

    |

  5. If a function F: RrarrR is defined as f(x)=int(x^8+4)/(x^4-2x^2+2)dx ...

    Text Solution

    |

  6. Six fair dice are rolled . The probability that the product of the num...

    Text Solution

    |

  7. If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the c...

    Text Solution

    |

  8. Let 2a+2b+c=0 , then the equation of the straight line ax + by + c = 0...

    Text Solution

    |

  9. If x,|x+a|,|x-1| are first three terms of an A.P., then the sum of its...

    Text Solution

    |

  10. The difference between the greatest and the least possible value of th...

    Text Solution

    |

  11. The value of int0^(12pi) ([sint]+[-sint])dt is equal to (where [.] de...

    Text Solution

    |

  12. For the function f(x)=sinx+2cosx,AA"x"in[0,2pi] we obtain

    Text Solution

    |

  13. Find the equation of the plane containing the lines 2x-y+z-3=0,3x+y+z=...

    Text Solution

    |

  14. If vecma,vecmband vecmc are 3 units vectors such that vecma.vecmb= ve...

    Text Solution

    |

  15. Let the points A lies on 3x-4y+1=0, the point B lines on 4 x + 3 y - 7...

    Text Solution

    |

  16. Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),...

    Text Solution

    |

  17. Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):...

    Text Solution

    |

  18. If S=sum(r=1)^(80)(r)/((r^4+r^2+1)) , then the value of (6481s)/(1000...

    Text Solution

    |

  19. If the equation of the tangent at the point P(3,4) on the parabola who...

    Text Solution

    |

  20. In the figure PQ PO1 and O1Q are the diameters of semicircles C1,C2 an...

    Text Solution

    |