Home
Class 12
MATHS
If f(x)=[x]^({x}) +{x}^([x]) + sin (pix...

If `f(x)=[x]^({x}) +{x}^([x]) + sin (pix)` , Where [.] and {.} represent the greatest integer function and the fractional part function respectively, then `f'(7/2)` Is equal to

A

`sqrt3In3+pi/4`

B

`sqrt3In3+(3pi)/4`

C

`sqrt3In3+pi+3/4`

D

`sqrt3In3+3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(7/2) \) for the function \[ f(x) = [x]^{\{x\}} + \{x\}^{[x]} + \sin(\pi x) \] where \([x]\) is the greatest integer function and \(\{x\}\) is the fractional part function, we will follow these steps: ### Step 1: Identify the values of \([x]\) and \(\{x\}\) at \(x = \frac{7}{2}\) Since \( \frac{7}{2} = 3.5 \): - The greatest integer function \([x]\) gives us \([3.5] = 3\). - The fractional part function \(\{x\}\) gives us \(\{3.5\} = 3.5 - 3 = 0.5\). ### Step 2: Substitute these values into the function \(f(x)\) Now substituting these values into the function: \[ f\left(\frac{7}{2}\right) = [3.5]^{\{3.5\}} + \{3.5\}^{[3.5]} + \sin\left(\pi \cdot \frac{7}{2}\right) \] This simplifies to: \[ f\left(\frac{7}{2}\right) = 3^{0.5} + 0.5^{3} + \sin\left(\frac{7\pi}{2}\right) \] ### Step 3: Calculate each term 1. \(3^{0.5} = \sqrt{3}\) 2. \(0.5^{3} = \frac{1}{8}\) 3. \(\sin\left(\frac{7\pi}{2}\right)\): - Since \(\frac{7\pi}{2} = 3.5\pi\), and \(3.5\pi\) is an odd multiple of \(\frac{\pi}{2}\), we have \(\sin(3.5\pi) = -1\). Thus, \[ f\left(\frac{7}{2}\right) = \sqrt{3} + \frac{1}{8} - 1 \] ### Step 4: Combine the terms Combining these gives: \[ f\left(\frac{7}{2}\right) = \sqrt{3} - \frac{7}{8} \] ### Step 5: Differentiate \(f(x)\) Now we need to find \(f'(x)\): \[ f'(x) = \frac{d}{dx}\left([x]^{\{x\}} + \{x\}^{[x]} + \sin(\pi x)\right) \] Using the chain rule and product rule, we differentiate each term: 1. For \( [x]^{\{x\}} \): - This is a constant when \(x\) is in the interval \([3, 4)\), so the derivative is \(0\). 2. For \(\{x\}^{[x]}\): - This can be differentiated using the power rule: \[ \frac{d}{dx} \left(\{x\}^{3}\right) = 3\{x\}^{2} \cdot \frac{d}{dx}(\{x\}) = 3\{x\}^{2} \cdot 1 = 3\{x\}^{2} \] where \(\{x\} = x - 3\). 3. For \(\sin(\pi x)\): - The derivative is \(\pi \cos(\pi x)\). Thus, combining these gives: \[ f'(x) = 0 + 3(x - 3)^{2} + \pi \cos(\pi x) \] ### Step 6: Evaluate \(f'(7/2)\) Substituting \(x = \frac{7}{2}\): \[ f'\left(\frac{7}{2}\right) = 3\left(\frac{7}{2} - 3\right)^{2} + \pi \cos\left(\frac{7\pi}{2}\right) \] Calculating each term: 1. \(\frac{7}{2} - 3 = \frac{1}{2}\), so: \[ 3\left(\frac{1}{2}\right)^{2} = 3 \cdot \frac{1}{4} = \frac{3}{4} \] 2. \(\cos\left(\frac{7\pi}{2}\right) = 0\) (since it's an odd multiple of \(\frac{\pi}{2}\)). Thus, \[ f'\left(\frac{7}{2}\right) = \frac{3}{4} + 0 = \frac{3}{4} \] ### Final Answer The value of \(f'\left(\frac{7}{2}\right)\) is \[ \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 25

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 28

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

Period of f(x)=e^(cos x)+sin pi[x] is (l.] and {.} denotes the greatest integer function and fractional part function respectively)

Solve the equation [x]+{-x}=2x, (where [.l and {} represents greatest integer function fractional part function respectively)

If f(x)=[x^(2)]+sqrt({x}^(2)), where [] and {.} denote the greatest integer and fractional part functions respectively,then

In the questions,[x] and {x} represent the greatest integer function and the fractional part function,respectively.Solve: [x]^(2)-5[x]+6=0

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

If (x)=[x],0<={x}<0.5 and f(x)=[x]+1,0.5<{x}<1 then prove that f(x)=-f(-x) (wherel.] and {.} represent the greatest integer function and the fractional part function, respectively).

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

NTA MOCK TESTS-NTA JEE MOCK TEST 27-MATHEMATICS
  1. Let Z is be the set of integers , if A={"x"inZ:|x-3|^((x^2-5x+6))=1} a...

    Text Solution

    |

  2. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  3. If two points P & Q on the hyperbola ,x^2/a^2-y^2/b^2=1 whose centre i...

    Text Solution

    |

  4. If the standard deviation of 0,1,2,3...9 is K, then the standard devia...

    Text Solution

    |

  5. The value of x for which sin(cot^-1(1+x))=cos (tan^-1x) is

    Text Solution

    |

  6. If 2^(a1),2^(a2),2^(a3).......2^(ar) are in geometric progression , th...

    Text Solution

    |

  7. The solution of the equation |z|-z=1+2i is

    Text Solution

    |

  8. The unbiased dice is tossed until a number greater than 4 appear. W...

    Text Solution

    |

  9. The range of a for which the equation x^2+x-4=0 has its smaller root i...

    Text Solution

    |

  10. If volume of parallelopiped whose there coterminous edges are vec u = ...

    Text Solution

    |

  11. If 5a + 4b + 20 c = t then the value of t for which the line ax+by+c-...

    Text Solution

    |

  12. The solution of the differential equation sin(x+y)dy =dx is

    Text Solution

    |

  13. If f(x)=[x]^({x}) +{x}^([x]) + sin (pix) , Where [.] and {.} represen...

    Text Solution

    |

  14. An aeroplane flying horizontally , 1km above the ground , is observed...

    Text Solution

    |

  15. The sum to infinity of the series 1+(4)/(5)+(7)/(5^(2))+(10)/(5^(3))...

    Text Solution

    |

  16. The value of lim(xto1^(+))(int(1)^(x)|t-1|dt)/(sin(x-1)) is

    Text Solution

    |

  17. If f(x)=cos^-1(sin(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

    Text Solution

    |

  18. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int-1^1 f(x)dx is equal...

    Text Solution

    |

  19. If the planes x-cy-bz=0, cx-y+az=0 and bx+ay-z=0 pass through a line, ...

    Text Solution

    |

  20. Let y = x^3 - 6x^2 + 9x + 1 be an equation of a curve, then the x-inte...

    Text Solution

    |