Home
Class 12
MATHS
If f(x)=cos^-1(sin(4cos^2x-1)), then 1/...

If `f(x)=cos^-1(sin(4cos^2x-1)), ` then `1/pif'(pi/3).f(pi/10)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\pi} f'(\frac{\pi}{3}) \cdot f(\frac{\pi}{10}) \) where \( f(x) = \cos^{-1}(\sin(4\cos^2 x - 1)) \). ### Step 1: Rewrite the function We start with: \[ f(x) = \cos^{-1}(\sin(4\cos^2 x - 1)) \] We know that \( \sin(4\cos^2 x - 1) \) can be rewritten using the identity \( \sin(a) = \sin(\pi - a) \) to bring it into a more manageable form. ### Step 2: Simplify the argument of sine We can express \( 4\cos^2 x - 1 \) in terms of sine: \[ 4\cos^2 x - 1 = 3 - 4\sin^2 x \] Thus, we can rewrite: \[ f(x) = \cos^{-1}(\sin(3 - 4\sin^2 x)) \] ### Step 3: Use trigonometric identities Using the identity \( \sin(3x) = 3\sin x - 4\sin^3 x \), we can express \( f(x) \) as: \[ f(x) = \cos^{-1}(\sin(3x)) \] ### Step 4: Further simplification We can express \( f(x) \) using the identity for inverse trigonometric functions: \[ f(x) = \frac{\pi}{2} - \sin^{-1}(\sin(3x)) \] Since \( \sin(3x) \) can take values outside the principal range, we adjust it: \[ f(x) = \frac{\pi}{2} - (3x) \quad \text{(for } 3x \text{ in the range of } [0, \pi]) \] ### Step 5: Find \( f'(\frac{\pi}{3}) \) Now we differentiate \( f(x) \): \[ f'(x) = -3 \] Thus: \[ f'(\frac{\pi}{3}) = -3 \] ### Step 6: Calculate \( f(\frac{\pi}{10}) \) Next, we calculate \( f(\frac{\pi}{10}) \): \[ f(\frac{\pi}{10}) = \frac{\pi}{2} - 3 \cdot \frac{\pi}{10} = \frac{\pi}{2} - \frac{3\pi}{10} = \frac{5\pi}{10} - \frac{3\pi}{10} = \frac{2\pi}{10} = \frac{\pi}{5} \] ### Step 7: Combine results Now we can compute: \[ \frac{1}{\pi} f'(\frac{\pi}{3}) \cdot f(\frac{\pi}{10}) = \frac{1}{\pi} (-3) \cdot \frac{\pi}{5} = -\frac{3}{5} \] ### Final Answer Thus, the final result is: \[ \frac{1}{\pi} f'(\frac{\pi}{3}) \cdot f(\frac{\pi}{10}) = -\frac{3}{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 25

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 28

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cos x-sin x|, then f'((pi)/(4))=

If f'(x)=sin x+sin4x cos x then f'(2x^(2)+(pi)/(2))=

Knowledge Check

  • Let f(x)=e^(cos^(-1)sin(x+ pi/3)) , then

    A
    `f((8 pi)/(9))= e^((5pi)/(18))`
    B
    `f((8pi)/(9))= e^((13pi)/(18))`
    C
    `f(-(7pi)/(4))=e^((pi)/(12))`
    D
    `f(-(7pi)/(4))=e^((11pi)/(12))`
  • If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

    A
    `-3`
    B
    0
    C
    1
    D
    3
  • Let f(x) = x cos^(-1)(sin-|x|) , x in (-pi/2,pi/2)

    A
    `f(0) = - pi/2`
    B
    f'(x) is not defined at x = 0
    C
    f'(x) is increasing in `( -pi/2, 0)` and f'(x) is decreasing in `(0, pi/2)`
    D
    f'(x) is decreasing in `( -pi/2, 0)` and f'(x) is increasing in `(0, pi/2)`
  • Similar Questions

    Explore conceptually related problems

    let f(x)=e^(cos-1)sin(x+(pi)/(3)) then f((8 pi)/(9)) and f((-7 pi)/(4))

    if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

    f(x)=((1-cos x)/(1-sin x)), then f'((pi)/(2)) is equal to

    If f(x)=3+cos^-1(cos(pi/2+x)cos(pi/2-x)+sin(pi/2+x)sin(pi/2-x)) , x in [0,pi] then find the minimum value of f(x) is

    If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=