Home
Class 12
MATHS
If A is a square matrix of order 2xx2 an...

If A is a square matrix of order `2xx2` and `B=[(1,2),(3, 4)]`, such that `AB=BA`, then A can be

A

`[(1,4),(6, 7)]`

B

`[(1, 4),(7, 6)]`

C

`[(2,2),(2,4)]`

D

`[(3,4),(4,9)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible forms of the square matrix \( A \) of order \( 2 \times 2 \) such that it commutes with the given matrix \( B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \). This means that \( AB = BA \). Let \( A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \). ### Step 1: Compute \( AB \) We calculate \( AB \): \[ AB = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} p \cdot 1 + q \cdot 3 & p \cdot 2 + q \cdot 4 \\ r \cdot 1 + s \cdot 3 & r \cdot 2 + s \cdot 4 \end{pmatrix} = \begin{pmatrix} p + 3q & 2p + 4q \\ r + 3s & 2r + 4s \end{pmatrix} \] ### Step 2: Compute \( BA \) Next, we calculate \( BA \): \[ BA = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 1 \cdot p + 2 \cdot r & 1 \cdot q + 2 \cdot s \\ 3 \cdot p + 4 \cdot r & 3 \cdot q + 4 \cdot s \end{pmatrix} = \begin{pmatrix} p + 2r & q + 2s \\ 3p + 4r & 3q + 4s \end{pmatrix} \] ### Step 3: Set the equations equal Since \( AB = BA \), we equate the two resulting matrices: \[ \begin{pmatrix} p + 3q & 2p + 4q \\ r + 3s & 2r + 4s \end{pmatrix} = \begin{pmatrix} p + 2r & q + 2s \\ 3p + 4r & 3q + 4s \end{pmatrix} \] This gives us the following equations: 1. \( p + 3q = p + 2r \) 2. \( 2p + 4q = q + 2s \) 3. \( r + 3s = 3p + 4r \) 4. \( 2r + 4s = 3q + 4s \) ### Step 4: Simplify the equations From the first equation: \[ 3q = 2r \quad \Rightarrow \quad r = \frac{3}{2}q \] From the second equation: \[ 2p + 4q = q + 2s \quad \Rightarrow \quad 2p + 3q = 2s \quad \Rightarrow \quad s = p + \frac{3}{2}q \] From the third equation: \[ r + 3s = 3p + 4r \quad \Rightarrow \quad 3s = 3p + 3r \quad \Rightarrow \quad s = p + r \] Substituting \( r = \frac{3}{2}q \) into \( s = p + r \): \[ s = p + \frac{3}{2}q \] From the fourth equation: \[ 2r + 4s = 3q + 4s \quad \Rightarrow \quad 2r = 3q \quad \Rightarrow \quad r = \frac{3}{2}q \] This is consistent with our previous findings. ### Conclusion The general form of matrix \( A \) can be expressed as: \[ A = \begin{pmatrix} p & q \\ \frac{3}{2}q & p + \frac{3}{2}q \end{pmatrix} \] where \( p \) and \( q \) can be any real numbers.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 2 xx 2 such that A^(2)=O then,

If A is a square matrix of order 2xx2 such that |A|=27 , then sum of the infinite series |A|+|1/2A|+|1/4 A|+|1/8 A|+... is equal to _______ .

If A is a square matrix of order 3,|A|=6,B=5A^(2) then find |B|

If A=[(3,-4),(-1,2)] and B is a square matrix of order 2 such that AB=I then B=?

If A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that AB=BA=I , then B is called the __________.

If A and B are two square matrix of order 3xx3 and AB=A,BA=B then A^(2) is:

If A is a square matrix of order 3 such that abs(A)=2, then abs((adjA^(-1))^(-1)) is

If A and B are two square matrices of order 3xx3 which satify AB=A and BA=B , then Which of the following is true ?

NTA MOCK TESTS-NTA JEE MOCK TEST 30-MATHEMATICS
  1. Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-...

    Text Solution

    |

  2. The solution of the differential equation (ydx-xdy)/(xy)=xdx+ydy is (w...

    Text Solution

    |

  3. If a circle drawn by assuming a chord parallel to the transverse axis ...

    Text Solution

    |

  4. If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)], such that ...

    Text Solution

    |

  5. Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not ...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1...

    Text Solution

    |

  7. A vector vecr is equally inclined with the vectors veca=cos thetahat...

    Text Solution

    |

  8. Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Th...

    Text Solution

    |

  9. Let the incentre of DeltaABC is I(2, 5). If A=(1, 13) and B=(-4, 1), t...

    Text Solution

    |

  10. Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and p...

    Text Solution

    |

  11. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  12. Let A and B are two matrices of order 3xx3, where |A|=-2 and |B|=2, th...

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The value of int(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal ...

    Text Solution

    |

  15. If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@), then the value ...

    Text Solution

    |

  16. If x=3cos t and y=5sint, where t is a parameter, then 9(d^(2)y)/(dx^(2...

    Text Solution

    |

  17. The area (in sq. units) of the region bounded by the curves y=2-x^(2) ...

    Text Solution

    |

  18. A number equal to 2 times the mean and with a frequency equal to k is ...

    Text Solution

    |

  19. If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^...

    Text Solution

    |

  20. The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c, C i...

    Text Solution

    |