Home
Class 12
MATHS
A vector vecr is equally inclined with t...

A vector `vecr` is equally inclined with the vectors
`veca=cos thetahati+sin theta hatj, vecb=-sin theta hati+cos theta hatj` and `vecc=hatk`, then the angle between `vecr` and `veca` is

A

`cos^(-1)((1)/(sqrt2))`

B

`cos^(-1)((1)/(3))`

C

`cos^(-1)((1)/(sqrt3))`

D

`cos^(-1).(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vector \( \vec{R} \) and the vector \( \vec{A} \), given that \( \vec{R} \) is equally inclined to the vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = \cos(\theta) \hat{i} + \sin(\theta) \hat{j} \] \[ \vec{B} = -\sin(\theta) \hat{i} + \cos(\theta) \hat{j} \] \[ \vec{C} = \hat{k} \] 2. **Assume a specific value for \( \theta \)**: To simplify calculations, we can assume \( \theta = 0 \): \[ \vec{A} = \cos(0) \hat{i} + \sin(0) \hat{j} = 1 \hat{i} + 0 \hat{j} = \hat{i} \] \[ \vec{B} = -\sin(0) \hat{i} + \cos(0) \hat{j} = 0 \hat{i} + 1 \hat{j} = \hat{j} \] \[ \vec{C} = \hat{k} \] 3. **Determine vector \( \vec{R} \)**: Since \( \vec{R} \) is equally inclined to \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \), we can express \( \vec{R} \) as: \[ \vec{R} = R_1 \hat{i} + R_2 \hat{j} + R_3 \hat{k} \] For equal inclination, we can assume \( R_1 = R_2 = R_3 = R \). Thus: \[ \vec{R} = R(\hat{i} + \hat{j} + \hat{k}) \] 4. **Calculate the angle between \( \vec{R} \) and \( \vec{A} \)**: The angle \( \phi \) between two vectors \( \vec{R} \) and \( \vec{A} \) can be found using the dot product: \[ \vec{R} \cdot \vec{A} = |\vec{R}| |\vec{A}| \cos(\phi) \] 5. **Calculate the magnitudes**: \[ |\vec{A}| = \sqrt{1^2 + 0^2} = 1 \] \[ |\vec{R}| = \sqrt{R^2 + R^2 + R^2} = R\sqrt{3} \] 6. **Calculate the dot product**: \[ \vec{R} \cdot \vec{A} = (R \hat{i} + R \hat{j} + R \hat{k}) \cdot \hat{i} = R \] 7. **Set up the equation**: \[ R = |\vec{R}| |\vec{A}| \cos(\phi) \implies R = (R\sqrt{3})(1) \cos(\phi) \] \[ \cos(\phi) = \frac{R}{R\sqrt{3}} = \frac{1}{\sqrt{3}} \] 8. **Find the angle**: \[ \phi = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Final Answer: The angle between \( \vec{R} \) and \( \vec{A} \) is \( \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

vecA=4hati+4hatj-4hatk and vecB=3hati+hatj+4hatk , then angle between vectors vecA and vecB is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC

Let A vector veca =alpha hati + 2hatj + beta hatk (alpha, beta in R) , veca lies in the plane of the vectors, vecb= hati + hatj and vecc= hati -hatj+4hatk . If veca bisects the angle between vecb and vecc , then :

If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+hatj+2hatk , then sin theta is equal to

Let veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos theta)hatj,vecc=hatk and vecr=7hati+hatj+10hatk . IF vecr=x veca+y vecb+z vecc , then the value of (x^(2)+y^(2))/(z) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 30-MATHEMATICS
  1. Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-...

    Text Solution

    |

  2. The solution of the differential equation (ydx-xdy)/(xy)=xdx+ydy is (w...

    Text Solution

    |

  3. If a circle drawn by assuming a chord parallel to the transverse axis ...

    Text Solution

    |

  4. If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)], such that ...

    Text Solution

    |

  5. Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not ...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1...

    Text Solution

    |

  7. A vector vecr is equally inclined with the vectors veca=cos thetahat...

    Text Solution

    |

  8. Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Th...

    Text Solution

    |

  9. Let the incentre of DeltaABC is I(2, 5). If A=(1, 13) and B=(-4, 1), t...

    Text Solution

    |

  10. Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and p...

    Text Solution

    |

  11. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  12. Let A and B are two matrices of order 3xx3, where |A|=-2 and |B|=2, th...

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The value of int(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal ...

    Text Solution

    |

  15. If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@), then the value ...

    Text Solution

    |

  16. If x=3cos t and y=5sint, where t is a parameter, then 9(d^(2)y)/(dx^(2...

    Text Solution

    |

  17. The area (in sq. units) of the region bounded by the curves y=2-x^(2) ...

    Text Solution

    |

  18. A number equal to 2 times the mean and with a frequency equal to k is ...

    Text Solution

    |

  19. If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^...

    Text Solution

    |

  20. The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c, C i...

    Text Solution

    |