Home
Class 12
MATHS
The value of int(-1)^(1)(sin^(-1)x+(x^(5...

The value of `int_(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx` is equal to

A

`tan1`

B

0

C

`2tan1`

D

`-2tan1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \left( \sin^{-1}x + \frac{x^5 + x^3 - 1}{\cos x} \right) dx, \] we can break it down into three separate integrals: \[ I = \int_{-1}^{1} \sin^{-1}x \, dx + \int_{-1}^{1} \frac{x^5}{\cos x} \, dx + \int_{-1}^{1} \frac{x^3}{\cos x} \, dx - \int_{-1}^{1} \frac{1}{\cos x} \, dx. \] ### Step 1: Evaluate \(\int_{-1}^{1} \sin^{-1}x \, dx\) The function \(\sin^{-1}x\) is an odd function because: \[ \sin^{-1}(-x) = -\sin^{-1}(x). \] Thus, the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-1}^{1} \sin^{-1}x \, dx = 0. \] ### Step 2: Evaluate \(\int_{-1}^{1} \frac{x^5}{\cos x} \, dx\) Next, we check the function \(\frac{x^5}{\cos x}\): \[ \frac{-x^5}{\cos(-x)} = \frac{-x^5}{\cos x}. \] This shows that \(\frac{x^5}{\cos x}\) is also an odd function. Therefore, its integral over the symmetric interval is also zero: \[ \int_{-1}^{1} \frac{x^5}{\cos x} \, dx = 0. \] ### Step 3: Evaluate \(\int_{-1}^{1} \frac{x^3}{\cos x} \, dx\) Similarly, for \(\frac{x^3}{\cos x}\): \[ \frac{-x^3}{\cos(-x)} = \frac{-x^3}{\cos x}. \] This indicates that \(\frac{x^3}{\cos x}\) is an odd function as well, leading to: \[ \int_{-1}^{1} \frac{x^3}{\cos x} \, dx = 0. \] ### Step 4: Evaluate \(-\int_{-1}^{1} \frac{1}{\cos x} \, dx\) Now we need to evaluate \(-\int_{-1}^{1} \frac{1}{\cos x} \, dx\). The function \(\frac{1}{\cos x}\) is an even function because: \[ \frac{1}{\cos(-x)} = \frac{1}{\cos x}. \] Thus, we can simplify the integral: \[ -\int_{-1}^{1} \frac{1}{\cos x} \, dx = -2 \int_{0}^{1} \frac{1}{\cos x} \, dx. \] ### Step 5: Final Calculation The integral \(\int_{0}^{1} \sec x \, dx\) can be computed. The integral of \(\sec x\) is: \[ \int \sec x \, dx = \ln | \sec x + \tan x | + C. \] Thus, \[ \int_{0}^{1} \sec x \, dx = \left[ \ln | \sec x + \tan x | \right]_{0}^{1} = \ln | \sec(1) + \tan(1) | - \ln | \sec(0) + \tan(0) |. \] Since \(\sec(0) = 1\) and \(\tan(0) = 0\): \[ \ln | \sec(0) + \tan(0) | = \ln(1) = 0. \] Therefore, \[ \int_{0}^{1} \sec x \, dx = \ln | \sec(1) + \tan(1) |. \] Finally, we have: \[ I = -2 \ln | \sec(1) + \tan(1) |. \] ### Conclusion The value of the integral is: \[ I = -2 \ln | \sec(1) + \tan(1) |. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(sin^(5)x+x)dx=

int_(0)^(1)(cosx^(-1)x)dx

int_(-1)^(3)sin(x-[x])dx

Find the value of int_(0)^(1){(sin^(-1)x)/x}dx

int_(-1)^(1)(sin x)^(5)(cos x)^(4)dx=

The value of int_(1//2)^(1) (2 x sin (1)/(x) - cos (1)/(x) ) dx is

int_(0)^(5) 1/((x-1)(x-2))dx is equal to

int_(-1)^(1)(x^(4)+sin^(3)x)dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 30-MATHEMATICS
  1. Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-...

    Text Solution

    |

  2. The solution of the differential equation (ydx-xdy)/(xy)=xdx+ydy is (w...

    Text Solution

    |

  3. If a circle drawn by assuming a chord parallel to the transverse axis ...

    Text Solution

    |

  4. If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)], such that ...

    Text Solution

    |

  5. Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not ...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1...

    Text Solution

    |

  7. A vector vecr is equally inclined with the vectors veca=cos thetahat...

    Text Solution

    |

  8. Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Th...

    Text Solution

    |

  9. Let the incentre of DeltaABC is I(2, 5). If A=(1, 13) and B=(-4, 1), t...

    Text Solution

    |

  10. Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and p...

    Text Solution

    |

  11. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  12. Let A and B are two matrices of order 3xx3, where |A|=-2 and |B|=2, th...

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The value of int(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal ...

    Text Solution

    |

  15. If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@), then the value ...

    Text Solution

    |

  16. If x=3cos t and y=5sint, where t is a parameter, then 9(d^(2)y)/(dx^(2...

    Text Solution

    |

  17. The area (in sq. units) of the region bounded by the curves y=2-x^(2) ...

    Text Solution

    |

  18. A number equal to 2 times the mean and with a frequency equal to k is ...

    Text Solution

    |

  19. If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^...

    Text Solution

    |

  20. The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c, C i...

    Text Solution

    |