Home
Class 12
MATHS
If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(...

If `E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@)`, then the value of 10E is equal to

A

7.5

B

2.5

C

3.5

D

4.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( E = \cos^2 71^\circ + \cos^2 49^\circ + \cos 71^\circ \cos 49^\circ \), we will break it down step by step. ### Step 1: Rewrite the expression for \( E \) We start with the expression: \[ E = \cos^2 71^\circ + \cos^2 49^\circ + \cos 71^\circ \cos 49^\circ \] ### Step 2: Use the identity for the sum of squares Recall the identity: \[ \cos^2 A + \cos^2 B + 2 \cos A \cos B = (\cos A + \cos B)^2 \] Thus, we can rewrite \( E \) as: \[ E = \cos^2 71^\circ + \cos^2 49^\circ + 2 \cos 71^\circ \cos 49^\circ - \cos 71^\circ \cos 49^\circ \] This can be simplified to: \[ E = \left( \cos 71^\circ + \cos 49^\circ \right)^2 - \cos 71^\circ \cos 49^\circ \] ### Step 3: Calculate \( \cos 71^\circ + \cos 49^\circ \) Using the formula for the sum of cosines: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Substituting \( A = 71^\circ \) and \( B = 49^\circ \): \[ \cos 71^\circ + \cos 49^\circ = 2 \cos\left(\frac{71^\circ + 49^\circ}{2}\right) \cos\left(\frac{71^\circ - 49^\circ}{2}\right) \] Calculating the angles: \[ \frac{71^\circ + 49^\circ}{2} = \frac{120^\circ}{2} = 60^\circ \] \[ \frac{71^\circ - 49^\circ}{2} = \frac{22^\circ}{2} = 11^\circ \] Thus, \[ \cos 71^\circ + \cos 49^\circ = 2 \cos 60^\circ \cos 11^\circ = 2 \cdot \frac{1}{2} \cdot \cos 11^\circ = \cos 11^\circ \] ### Step 4: Substitute back into \( E \) Now substituting back: \[ E = (\cos 11^\circ)^2 - \cos 71^\circ \cos 49^\circ \] ### Step 5: Calculate \( \cos 71^\circ \cos 49^\circ \) Using the product-to-sum formula: \[ \cos A \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] Substituting \( A = 71^\circ \) and \( B = 49^\circ \): \[ \cos 71^\circ \cos 49^\circ = \frac{1}{2} \left( \cos(120^\circ) + \cos(22^\circ) \right) \] Since \( \cos 120^\circ = -\frac{1}{2} \): \[ \cos 71^\circ \cos 49^\circ = \frac{1}{2} \left( -\frac{1}{2} + \cos 22^\circ \right) = \frac{\cos 22^\circ - \frac{1}{2}}{2} \] ### Step 6: Final expression for \( E \) Now substituting this back into \( E \): \[ E = \cos^2 11^\circ - \frac{\cos 22^\circ - \frac{1}{2}}{2} \] ### Step 7: Calculate \( E \) Using the identity \( \cos^2 A = \frac{1 + \cos 2A}{2} \): \[ \cos^2 11^\circ = \frac{1 + \cos 22^\circ}{2} \] Thus, \[ E = \frac{1 + \cos 22^\circ}{2} - \frac{\cos 22^\circ - \frac{1}{2}}{2} \] Simplifying this: \[ E = \frac{1 + \cos 22^\circ - \cos 22^\circ + \frac{1}{2}}{2} = \frac{1 + \frac{1}{2}}{2} = \frac{3/2}{2} = \frac{3}{4} \] ### Step 8: Calculate \( 10E \) Finally, we calculate: \[ 10E = 10 \times \frac{3}{4} = \frac{30}{4} = 7.5 \] Thus, the value of \( 10E \) is \( \boxed{7.5} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

cos^(2)10^(@)+cos^(2)50^(@)-cos10^(@)cos50^(@) is equal to

cos(x^(2)e^(x))

cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos^(2) 90^(@) is equal to

If e^(cos x) -e^(-cos x) = 4 , then the value of cos x, is

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.

The value of (cos3x)/(2cos2x-1) is equal to

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 30-MATHEMATICS
  1. Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-...

    Text Solution

    |

  2. The solution of the differential equation (ydx-xdy)/(xy)=xdx+ydy is (w...

    Text Solution

    |

  3. If a circle drawn by assuming a chord parallel to the transverse axis ...

    Text Solution

    |

  4. If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)], such that ...

    Text Solution

    |

  5. Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not ...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1...

    Text Solution

    |

  7. A vector vecr is equally inclined with the vectors veca=cos thetahat...

    Text Solution

    |

  8. Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Th...

    Text Solution

    |

  9. Let the incentre of DeltaABC is I(2, 5). If A=(1, 13) and B=(-4, 1), t...

    Text Solution

    |

  10. Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and p...

    Text Solution

    |

  11. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  12. Let A and B are two matrices of order 3xx3, where |A|=-2 and |B|=2, th...

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The value of int(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal ...

    Text Solution

    |

  15. If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@), then the value ...

    Text Solution

    |

  16. If x=3cos t and y=5sint, where t is a parameter, then 9(d^(2)y)/(dx^(2...

    Text Solution

    |

  17. The area (in sq. units) of the region bounded by the curves y=2-x^(2) ...

    Text Solution

    |

  18. A number equal to 2 times the mean and with a frequency equal to k is ...

    Text Solution

    |

  19. If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^...

    Text Solution

    |

  20. The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c, C i...

    Text Solution

    |