Home
Class 12
MATHS
If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xg...

If `f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^((1)/(x)))/(e^((2)/(x))+be^((1)/(x))),xlt0):}`
continuous at x = 0 for some constants a, b and c, then the value of `(50b)/(a)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). This means that the right-hand limit (RHL), the left-hand limit (LHL), and the functional value at \( x = 0 \) must all be equal. ### Step-by-step Solution: 1. **Identify the function pieces**: The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{\sqrt{x}}{\sqrt{4 + \sqrt{x}} - a} & \text{if } x > 0 \\ c & \text{if } x = 0 \\ \frac{4e^{\frac{2}{x}} + 3e^{\frac{1}{x}}}{e^{\frac{2}{x}} + be^{\frac{1}{x}}} & \text{if } x < 0 \end{cases} \] 2. **Calculate the Right-Hand Limit (RHL)**: For \( x > 0 \): \[ \text{RHL} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{4 + \sqrt{x}} - a} \] Substitute \( t = \sqrt{x} \) (thus \( x = t^2 \)): \[ \text{RHL} = \lim_{t \to 0} \frac{t}{\sqrt{4 + t} - a} \] This limit will be in the form \( \frac{0}{0} \) if \( \sqrt{4} - a = 0 \), which gives \( a = 2 \). 3. **Substituting \( a \) into the limit**: Now substituting \( a = 2 \): \[ \text{RHL} = \lim_{t \to 0} \frac{t}{\sqrt{4 + t} - 2} \] Rationalizing the denominator: \[ = \lim_{t \to 0} \frac{t(\sqrt{4 + t} + 2)}{(4 + t) - 4} = \lim_{t \to 0} \frac{t(\sqrt{4 + t} + 2)}{t} = \lim_{t \to 0} (\sqrt{4 + t} + 2) \] As \( t \to 0 \): \[ \text{RHL} = 2 + 2 = 4 \] 4. **Calculate the Left-Hand Limit (LHL)**: For \( x < 0 \): \[ \text{LHL} = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{4e^{\frac{2}{x}} + 3e^{\frac{1}{x}}}{e^{\frac{2}{x}} + be^{\frac{1}{x}}} \] As \( x \to 0^- \), \( e^{\frac{1}{x}} \to 0 \) and \( e^{\frac{2}{x}} \to 0 \): \[ \text{LHL} = \frac{0 + 0}{0 + b} = 0 \quad \text{(if } b \neq 0\text{)} \] 5. **Equate limits and functional value**: Since \( f(0) = c \), we have: \[ \text{RHL} = c = 4 \] Thus, \( c = 4 \). 6. **Equate LHL to \( c \)**: From the left-hand limit: \[ \frac{3}{b} = 4 \implies b = \frac{3}{4} \] 7. **Calculate \( \frac{50b}{a} \)**: Now, we have \( a = 2 \) and \( b = \frac{3}{4} \): \[ \frac{50b}{a} = \frac{50 \cdot \frac{3}{4}}{2} = \frac{50 \cdot 3}{8} = \frac{150}{8} = 18.75 \] ### Final Answer: \[ \frac{50b}{a} = 18.75 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 29

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

l(x)=[(x(3e^((1)/(x))+4))/(2-e^((1)/(x))),x!=0;0,x=0

f(x)=(sin x+cos x)^(cosecx),-(pi)/(2)

Let f(x)={{:((sin(a+1)x+sinx)/(x)",",xlt0),(c",",x=0),((sqrt(x+bx^(2)))/(bx^((3)/(2)))",",xgt0):} If f(x) is continous at x = 0, then

Let ((e^(x)-1)^(2))/(sin((x)/(a))log(1+(x)/(4)))" for "x ne 0 and f(0)=12. If f is continuous at x = 0, then the value of a is equal to

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

if f(x)={{:((sin(p+1)x+sinx)/(x),xlt0),(x,x=0),((sqrt(x^(2)+x)-sqrt(x))/(x^(3//2)),xgt0):} is continuous at x=0 then (p,q) is

If f(x)={{:((e^((1+(1)/(x)))-a)/(e^((1)/(x))+1),":",xne0),(b,":",x=0):} (where a and b are arbitrary constants) is continuous at x = 0, then the value of a^(2) is equal to (use e = 2.7)

Let f(x)={{:(,(e^(x^2)-(2)/(pi)sin^(-1)sqrt(1-x))/(In(1+sqrtx)),x in (0,1)),(,k,x le 0):} be a continuous at x=0, then the value of k, is

NTA MOCK TESTS-NTA JEE MOCK TEST 30-MATHEMATICS
  1. Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-...

    Text Solution

    |

  2. The solution of the differential equation (ydx-xdy)/(xy)=xdx+ydy is (w...

    Text Solution

    |

  3. If a circle drawn by assuming a chord parallel to the transverse axis ...

    Text Solution

    |

  4. If A is a square matrix of order 2xx2 and B=[(1,2),(3, 4)], such that ...

    Text Solution

    |

  5. Let o+ and ox are two mathematical operators. If p o+ (p ox q) is not ...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1...

    Text Solution

    |

  7. A vector vecr is equally inclined with the vectors veca=cos thetahat...

    Text Solution

    |

  8. Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Th...

    Text Solution

    |

  9. Let the incentre of DeltaABC is I(2, 5). If A=(1, 13) and B=(-4, 1), t...

    Text Solution

    |

  10. Lying in the plane x+y+z=6 is a line L passing through (1, 2, 3) and p...

    Text Solution

    |

  11. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  12. Let A and B are two matrices of order 3xx3, where |A|=-2 and |B|=2, th...

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The value of int(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal ...

    Text Solution

    |

  15. If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@), then the value ...

    Text Solution

    |

  16. If x=3cos t and y=5sint, where t is a parameter, then 9(d^(2)y)/(dx^(2...

    Text Solution

    |

  17. The area (in sq. units) of the region bounded by the curves y=2-x^(2) ...

    Text Solution

    |

  18. A number equal to 2 times the mean and with a frequency equal to k is ...

    Text Solution

    |

  19. If f(x)={{:((sqrtx)/(sqrt(4+sqrtx)-a),xgt0),(c,x=0),((4e^((2)/(x))+3e^...

    Text Solution

    |

  20. The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c, C i...

    Text Solution

    |