Home
Class 12
MATHS
If lim(xrarr0)(sin2x-asinx)/(x^(3)) exis...

If `lim_(xrarr0)(sin2x-asinx)/(x^(3))` exists finitely, then the value of a is

A

0

B

2

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{\sin 2x - a \sin x}{x^3} \) and find the value of \( a \) for which this limit exists finitely, we can follow these steps: ### Step 1: Expand \( \sin 2x \) and \( \sin x \) using Taylor series The Taylor series expansion for \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] For \( \sin 2x \), we can substitute \( 2x \) into the series: \[ \sin 2x = 2x - \frac{(2x)^3}{6} + O(x^5) = 2x - \frac{8x^3}{6} + O(x^5) = 2x - \frac{4x^3}{3} + O(x^5) \] ### Step 2: Substitute the expansions into the limit Now substituting the expansions into the limit expression: \[ \sin 2x - a \sin x = \left(2x - \frac{4x^3}{3} + O(x^5)\right) - a\left(x - \frac{x^3}{6} + O(x^5)\right) \] This simplifies to: \[ = 2x - \frac{4x^3}{3} - ax + \frac{ax^3}{6} + O(x^5) \] Combining like terms: \[ = (2 - a)x + \left(-\frac{4}{3} + \frac{a}{6}\right)x^3 + O(x^5) \] ### Step 3: Formulate the limit expression Now, we can write the limit: \[ \lim_{x \to 0} \frac{(2 - a)x + \left(-\frac{4}{3} + \frac{a}{6}\right)x^3 + O(x^5)}{x^3} \] This can be separated into two parts: \[ = \lim_{x \to 0} \left( \frac{(2 - a)x}{x^3} + \frac{-\frac{4}{3} + \frac{a}{6}}{1} + O(x^2) \right) \] The first term \(\frac{(2 - a)x}{x^3}\) simplifies to \(\frac{2 - a}{x^2}\), which goes to infinity unless \(2 - a = 0\). ### Step 4: Set the condition for the limit to exist For the limit to exist finitely, we need: \[ 2 - a = 0 \implies a = 2 \] ### Final Answer Thus, the value of \( a \) for which the limit exists finitely is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if lim_(x rarr0)(sin2x+a sin x)/(x^(3)) be finite,then the value of a is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

if L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite then find the value of a&L

If L=lim_(x rarr0)(sin2x+a sin x)/(x^(3)) is finite,then find the value of aandL.

If lim_(x rarr o)(sin2x+a sin x)/(x^(3)) be finite,then the value a and the limit are respectively given by

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0) (sin 3 x)/(2x)

NTA MOCK TESTS-NTA JEE MOCK TEST 32-MATHEMATICS
  1. If y=|tanx-|sinx||, then the value of (dy)/(dx) at x=(5pi)/(4) is

    Text Solution

    |

  2. The value of k for which the sum of the squares of the roots of 2x^(2)...

    Text Solution

    |

  3. If lim(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of...

    Text Solution

    |

  4. If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

    Text Solution

    |

  5. The function f(x) = max. {(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  6. A nine - digit number is formed using the digits 1, 2, 3, 5 and 7. The...

    Text Solution

    |

  7. The order of the differential equation of the family of curves y=a3^(b...

    Text Solution

    |

  8. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  9. Which of the following statement is not a fallacy?

    Text Solution

    |

  10. The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where...

    Text Solution

    |

  11. A plane passes through (1, -2, 1) and is perpendicular to two planes 2...

    Text Solution

    |

  12. Consider A=[(a(11),a(12)),(a(21),a(22))] and B=[(1,1),(2,1)] such that...

    Text Solution

    |

  13. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  14. If 2, 7, 9 and 5 are subtraced respectively from four numbers in geome...

    Text Solution

    |

  15. The coefficient of x^(6) in the expansion of (1+x+x^(2)+x^(3))(1-x)^(6...

    Text Solution

    |

  16. The acute angles between the curves y=2x^(2)-x and y^(2)=x at (0, 0) a...

    Text Solution

    |

  17. The slope of the tangent of the curve y=int(x)^(x^(2))(cos^(-1)t^(2))d...

    Text Solution

    |

  18. The valueof int((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is...

    Text Solution

    |

  19. Let PQ be a focal chord of the parabola y^(2)=4ax. If the centre of a ...

    Text Solution

    |

  20. If lambda in R such that the origin and the non-real roots of the equa...

    Text Solution

    |