Home
Class 12
MATHS
If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)...

If `f(x)=tan^(-1)sqrt(x^(2)+4x)` `+sin^(-1)sqrt(x^(2)+4x+1)`

A

domain of `f(x)` contains 3 integers only

B

range of `f(x)` has two elements only

C

`f(x)` is a constant function `Aax in R`

D

`f(x)` contains only two elements in its domain

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \tan^{-1}(\sqrt{x^2 + 4x}) + \sin^{-1}(\sqrt{x^2 + 4x + 1}) \) and determine its domain and range. ### Step 1: Determine the domain of \( f(x) \) 1. **Identify the conditions for the inverse sine function**: The function \( \sin^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, we need: \[ \sqrt{x^2 + 4x + 1} \leq 1 \] 2. **Square both sides**: Squaring both sides gives: \[ x^2 + 4x + 1 \leq 1 \] Simplifying this, we get: \[ x^2 + 4x \leq 0 \] 3. **Factor the quadratic**: Factoring the left side: \[ x(x + 4) \leq 0 \] 4. **Find the critical points**: The critical points are \( x = 0 \) and \( x = -4 \). 5. **Test intervals**: We test intervals around the critical points: - For \( x < -4 \), say \( x = -5 \): \( (-5)(-1) > 0 \) (not in the domain) - For \( -4 < x < 0 \), say \( x = -2 \): \( (-2)(2) < 0 \) (in the domain) - For \( x > 0 \), say \( x = 1 \): \( (1)(5) > 0 \) (not in the domain) Thus, the domain of \( f(x) \) is \( [-4, 0] \). ### Step 2: Check the condition for the inverse tangent function 1. **Condition for the inverse tangent function**: The function \( \tan^{-1}(y) \) is defined for all real \( y \). Therefore, we need: \[ \sqrt{x^2 + 4x} \geq 0 \] This is satisfied for all \( x \) in the domain \( [-4, 0] \). ### Step 3: Calculate the range of \( f(x) \) 1. **Evaluate \( f(x) \) at the endpoints of the domain**: - For \( x = -4 \): \[ f(-4) = \tan^{-1}(\sqrt{(-4)^2 + 4(-4)}) + \sin^{-1}(\sqrt{(-4)^2 + 4(-4) + 1}) = \tan^{-1}(0) + \sin^{-1}(1) = 0 + \frac{\pi}{2} = \frac{\pi}{2} \] - For \( x = 0 \): \[ f(0) = \tan^{-1}(\sqrt{0^2 + 4(0)}) + \sin^{-1}(\sqrt{0^2 + 4(0) + 1}) = \tan^{-1}(0) + \sin^{-1}(1) = 0 + \frac{\pi}{2} = \frac{\pi}{2} \] 2. **Conclusion on the range**: Since \( f(-4) = f(0) = \frac{\pi}{2} \), the range of \( f(x) \) is a single value: \[ \text{Range} = \left\{ \frac{\pi}{2} \right\} \] ### Final Conclusion - The domain of \( f(x) \) contains only 2 elements: \( -4 \) and \( 0 \). - The range of \( f(x) \) has only 1 element: \( \frac{\pi}{2} \). - Therefore, the correct option is that \( f(x) \) is a constant function.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

Express: cot^-1 (y/(sqrt(1-x^2-y^2)))=2tan^-1 sqrt((3-4x^2)/(4x^2))- tan^-1 sqrt ((3-4x^2)/x^2) as a rational integral equation in x and y.

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

NTA MOCK TESTS-NTA JEE MOCK TEST 32-MATHEMATICS
  1. The value of k for which the sum of the squares of the roots of 2x^(2)...

    Text Solution

    |

  2. If lim(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of...

    Text Solution

    |

  3. If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

    Text Solution

    |

  4. The function f(x) = max. {(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  5. A nine - digit number is formed using the digits 1, 2, 3, 5 and 7. The...

    Text Solution

    |

  6. The order of the differential equation of the family of curves y=a3^(b...

    Text Solution

    |

  7. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  8. Which of the following statement is not a fallacy?

    Text Solution

    |

  9. The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where...

    Text Solution

    |

  10. A plane passes through (1, -2, 1) and is perpendicular to two planes 2...

    Text Solution

    |

  11. Consider A=[(a(11),a(12)),(a(21),a(22))] and B=[(1,1),(2,1)] such that...

    Text Solution

    |

  12. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  13. If 2, 7, 9 and 5 are subtraced respectively from four numbers in geome...

    Text Solution

    |

  14. The coefficient of x^(6) in the expansion of (1+x+x^(2)+x^(3))(1-x)^(6...

    Text Solution

    |

  15. The acute angles between the curves y=2x^(2)-x and y^(2)=x at (0, 0) a...

    Text Solution

    |

  16. The slope of the tangent of the curve y=int(x)^(x^(2))(cos^(-1)t^(2))d...

    Text Solution

    |

  17. The valueof int((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is...

    Text Solution

    |

  18. Let PQ be a focal chord of the parabola y^(2)=4ax. If the centre of a ...

    Text Solution

    |

  19. If lambda in R such that the origin and the non-real roots of the equa...

    Text Solution

    |

  20. Let |A|=1, |vecb|=4 and veca xxvecr +vecb=vecr. If the projection of v...

    Text Solution

    |