Home
Class 12
MATHS
Let |A|=1, |vecb|=4 and veca xxvecr +vec...

Let `|A|=1, |vecb|=4` and `veca xxvecr +vecb=vecr`. If the projection of `vecr` along `veca` is 2, then the projection of `vecr` along `vecb` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information: 1. **Given Information**: - \(|\vec{A}| = 1\) - \(|\vec{B}| = 4\) - \(\vec{A} \times \vec{R} + \vec{B} = \vec{R}\) - The projection of \(\vec{R}\) along \(\vec{A}\) is 2. 2. **Understanding Projections**: The projection of vector \(\vec{R}\) along vector \(\vec{A}\) is given by: \[ \text{Projection of } \vec{R} \text{ along } \vec{A} = \frac{\vec{R} \cdot \vec{A}}{|\vec{A}|} \] Since \(|\vec{A}| = 1\), this simplifies to: \[ \text{Projection of } \vec{R} \text{ along } \vec{A} = \vec{R} \cdot \vec{A} \] Given that this projection equals 2, we have: \[ \vec{R} \cdot \vec{A} = 2 \] 3. **Using the Given Relation**: We have the relation: \[ \vec{A} \times \vec{R} + \vec{B} = \vec{R} \] Rearranging gives: \[ \vec{A} \times \vec{R} = \vec{R} - \vec{B} \] 4. **Dotting with \(\vec{A}\)**: Now, we dot both sides of the equation \(\vec{A} \times \vec{R} = \vec{R} - \vec{B}\) with \(\vec{A}\): \[ \vec{A} \cdot (\vec{A} \times \vec{R}) = \vec{A} \cdot \vec{R} - \vec{A} \cdot \vec{B} \] The left-hand side is zero because the dot product of a vector with a vector perpendicular to it (cross product) is zero. Thus: \[ 0 = \vec{A} \cdot \vec{R} - \vec{A} \cdot \vec{B} \] Rearranging gives: \[ \vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{R} \] Substituting \(\vec{A} \cdot \vec{R} = 2\): \[ \vec{A} \cdot \vec{B} = 2 \] 5. **Finding the Projection of \(\vec{R}\) along \(\vec{B}\)**: We want to find the projection of \(\vec{R}\) along \(\vec{B}\): \[ \text{Projection of } \vec{R} \text{ along } \vec{B} = \frac{\vec{R} \cdot \vec{B}}{|\vec{B}|} \] We need to find \(\vec{R} \cdot \vec{B}\). We can use the relation: \[ \vec{A} \times \vec{R} = \vec{R} - \vec{B} \] Dotting with \(\vec{B}\): \[ \vec{A} \times \vec{R} \cdot \vec{B} = \vec{R} \cdot \vec{B} - \vec{B} \cdot \vec{B} \] The left-hand side is zero because \(\vec{A} \times \vec{R}\) is perpendicular to both \(\vec{A}\) and \(\vec{B}\). Thus: \[ 0 = \vec{R} \cdot \vec{B} - |\vec{B}|^2 \] Since \(|\vec{B}| = 4\), we have: \[ 0 = \vec{R} \cdot \vec{B} - 16 \] Therefore: \[ \vec{R} \cdot \vec{B} = 16 \] 6. **Calculating the Projection**: Now we can calculate the projection of \(\vec{R}\) along \(\vec{B}\): \[ \text{Projection of } \vec{R} \text{ along } \vec{B} = \frac{\vec{R} \cdot \vec{B}}{|\vec{B}|} = \frac{16}{4} = 4 \] ### Final Answer: The projection of \(\vec{R}\) along \(\vec{B}\) is \(4\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 31

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = vecb xx vec a , vecr xx vec b = veca xx vec b , then what is the value of (vec r)/(|vec r|)

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc0 is (A) |[veca vecb vecc]| (B) |vecr| (C) |[veca vecb vecr]vecr| (D) none of these

Let vecr be a unit vector satisfying vecrxxveca=vecb , where |veca|=sqrt(3) and |vecb|=sqrt(2) . Then vecr -

NTA MOCK TESTS-NTA JEE MOCK TEST 32-MATHEMATICS
  1. If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

    Text Solution

    |

  2. The function f(x) = max. {(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  3. A nine - digit number is formed using the digits 1, 2, 3, 5 and 7. The...

    Text Solution

    |

  4. The order of the differential equation of the family of curves y=a3^(b...

    Text Solution

    |

  5. Focus of hyperbola is (+-3,0) and equation of tangent is 2x+y-4=0, fin...

    Text Solution

    |

  6. Which of the following statement is not a fallacy?

    Text Solution

    |

  7. The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where...

    Text Solution

    |

  8. A plane passes through (1, -2, 1) and is perpendicular to two planes 2...

    Text Solution

    |

  9. Consider A=[(a(11),a(12)),(a(21),a(22))] and B=[(1,1),(2,1)] such that...

    Text Solution

    |

  10. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  11. If 2, 7, 9 and 5 are subtraced respectively from four numbers in geome...

    Text Solution

    |

  12. The coefficient of x^(6) in the expansion of (1+x+x^(2)+x^(3))(1-x)^(6...

    Text Solution

    |

  13. The acute angles between the curves y=2x^(2)-x and y^(2)=x at (0, 0) a...

    Text Solution

    |

  14. The slope of the tangent of the curve y=int(x)^(x^(2))(cos^(-1)t^(2))d...

    Text Solution

    |

  15. The valueof int((pi)/(6))^((pi)/(3))e^(sec^(2)x)(sinx)/(cos^(3)x)dx is...

    Text Solution

    |

  16. Let PQ be a focal chord of the parabola y^(2)=4ax. If the centre of a ...

    Text Solution

    |

  17. If lambda in R such that the origin and the non-real roots of the equa...

    Text Solution

    |

  18. Let |A|=1, |vecb|=4 and veca xxvecr +vecb=vecr. If the projection of v...

    Text Solution

    |

  19. Let a, x, y, z be real numbers satisfying the equations ax+ay=z x+...

    Text Solution

    |

  20. If the radisu of the circle passing through the origin and touching th...

    Text Solution

    |