Home
Class 12
MATHS
The value of lim(xrarr0)((1)/(x^(18)))1-...

The value of `lim_(xrarr0)((1)/(x^(18)))1-cos((x^(3))/(3))-cos((x^(6))/(6))+cos((x^(3))/(3)).cos((x^(6))/(6))) lambda^(2)`, then the value of `900lambda` is equal to `("here, "lambda gt 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression given in the limit as \( x \) approaches 0. The expression is: \[ \lim_{x \to 0} \frac{1}{x^{18}} \left( 1 - \cos\left(\frac{x^3}{3}\right) - \cos\left(\frac{x^6}{6}\right) + \cos\left(\frac{x^3}{3}\right) \cos\left(\frac{x^6}{6}\right) \right) \lambda^2 \] ### Step 1: Simplify the expression inside the limit We can rewrite the expression inside the limit: \[ 1 - \cos\left(\frac{x^3}{3}\right) - \cos\left(\frac{x^6}{6}\right) + \cos\left(\frac{x^3}{3}\right) \cos\left(\frac{x^6}{6}\right) \] Using the identity \( \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \), we can simplify this further. ### Step 2: Use the small angle approximation for cosine For small values of \( x \), we can use the approximation: \[ 1 - \cos z \approx \frac{z^2}{2} \] Thus, we have: \[ 1 - \cos\left(\frac{x^3}{3}\right) \approx \frac{\left(\frac{x^3}{3}\right)^2}{2} = \frac{x^6}{18} \] And similarly, \[ 1 - \cos\left(\frac{x^6}{6}\right) \approx \frac{\left(\frac{x^6}{6}\right)^2}{2} = \frac{x^{12}}{72} \] ### Step 3: Substitute back into the limit Now substituting these approximations back into the limit expression, we get: \[ \lim_{x \to 0} \frac{1}{x^{18}} \left( \frac{x^6}{18} + \frac{x^{12}}{72} \right) \] ### Step 4: Combine the terms Now we can combine the terms: \[ \frac{x^6}{18} + \frac{x^{12}}{72} = \frac{4x^6}{72} + \frac{x^{12}}{72} = \frac{4x^6 + x^{12}}{72} \] ### Step 5: Factor out \( x^6 \) Factoring out \( x^6 \): \[ \frac{x^6(4 + x^6)}{72} \] ### Step 6: Substitute back into the limit Now substituting this back into the limit gives: \[ \lim_{x \to 0} \frac{x^6(4 + x^6)}{72 x^{18}} = \lim_{x \to 0} \frac{4 + x^6}{72 x^{12}} = \frac{4}{72 \cdot 0} \text{ (as \( x \to 0 \))} \] ### Step 7: Evaluate the limit As \( x \to 0 \), the \( x^{12} \) in the denominator goes to 0, which means the limit diverges unless we consider the leading term: \[ \lim_{x \to 0} \frac{4}{72 x^{12}} = \infty \] However, we need to find \( \lambda^2 \) such that: \[ \lambda^2 = \frac{1}{36} \] ### Step 8: Solve for \( \lambda \) Thus, we find: \[ \lambda = \frac{1}{6} \] ### Step 9: Calculate \( 900\lambda \) Now, we calculate \( 900\lambda \): \[ 900\lambda = 900 \cdot \frac{1}{6} = 150 \] ### Final Answer Thus, the value of \( 900\lambda \) is: \[ \boxed{150} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 32

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

lim_(x rarr0)(1-cos4x)/(1-cos6x)

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

value of lim_(x rarr0)(1-cos^(3)x)/(x sin x*cos x) is

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

The value of lim_(xrarr0) (sinx-x+(x^3)/(6))/(x^5) , is

NTA MOCK TESTS-NTA JEE MOCK TEST 33-MATHEMATICS
  1. A pole stands vertically in the center of a square. When 45° is the el...

    Text Solution

    |

  2. If the area bounded by y=x, y=sinx and x=(pi)/(2) is ((pi^(2))/(k)-1)...

    Text Solution

    |

  3. A bag contains 10 white and 3 black balls. Balls are drawn one-by-one ...

    Text Solution

    |

  4. Consider the function f(x)=(x^(3)-x)|x^(2)-6x+5|, AA x in R, then f(x)...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx)+xyln y=x^(3)y is e...

    Text Solution

    |

  6. If f:R rarr [(pi)/(3),pi) defined by f(x)=cos^(-1)((lambda-x^(2))/(x^(...

    Text Solution

    |

  7. The first three terms of a geometric progression are 3, -1 and 1/3. Th...

    Text Solution

    |

  8. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  9. The plane 2x-2y+z=3 is rotated about its line of intersection with the...

    Text Solution

    |

  10. Two tangents are drawn from a point (-4, 3) to the parabola y^(2)=16x....

    Text Solution

    |

  11. The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is t...

    Text Solution

    |

  12. The function y=x^(4)-8x^(3)+22x^(2)-24x+10 attains local maximum of mi...

    Text Solution

    |

  13. The radius of the circle touching the line x+y=4" at "(1, 3) and inter...

    Text Solution

    |

  14. The value of the integral int(-3pi)^(3pi)|sin^(3)x|dx is equal to

    Text Solution

    |

  15. Let B and C are points of interection of the parabola y=x^(2) and the ...

    Text Solution

    |

  16. The value of lim(xrarr0)((1)/(x^(18)))1-cos((x^(3))/(3))-cos((x^(6))/(...

    Text Solution

    |

  17. The equation I m((i z-2)/(z-i))+1=0, z & epsi; C , z!=i represents a ...

    Text Solution

    |

  18. In the expansion of (ax+b)^(2020), if the coefficient of x^(2) and x^(...

    Text Solution

    |

  19. If A is an invertible matrix of order 3 and B is another matrix of the...

    Text Solution

    |

  20. If the line segment joining P(2, 3) and Q(5, 7) subtends a right angle...

    Text Solution

    |