Home
Class 12
MATHS
If log(cosx)sin x ge 2 and 0le xle 3pi, ...

If `log_(cosx)sin x ge 2 and 0le xle 3pi`, then the value of `sinx` lies in the interval `(0, (sqrta-b)/(2)]` then value of a-b is

A

3

B

4

C

5

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the inequality given by the logarithmic condition and find the appropriate values for \( a \) and \( b \). ### Step-by-Step Solution: 1. **Understand the Inequality**: We start with the inequality: \[ \log_{\cos x} \sin x \geq 2 \] This can be rewritten using the property of logarithms: \[ \sin x \geq \cos^2 x \] 2. **Express \(\cos^2 x\)**: We know from the Pythagorean identity that: \[ \cos^2 x = 1 - \sin^2 x \] Therefore, we can substitute this into our inequality: \[ \sin x \geq 1 - \sin^2 x \] 3. **Rearranging the Inequality**: Rearranging gives us: \[ \sin^2 x + \sin x - 1 \geq 0 \] This is a quadratic inequality in terms of \(\sin x\). 4. **Finding the Roots**: We can find the roots of the quadratic equation: \[ t^2 + t - 1 = 0 \] where \( t = \sin x \). Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2} \] Thus, the roots are: \[ t_1 = \frac{-1 - \sqrt{5}}{2}, \quad t_2 = \frac{-1 + \sqrt{5}}{2} \] 5. **Analyzing the Quadratic**: The quadratic opens upwards (since the coefficient of \( t^2 \) is positive). Therefore, the inequality \( t^2 + t - 1 \geq 0 \) holds outside the interval defined by the roots: \[ t \leq \frac{-1 - \sqrt{5}}{2} \quad \text{or} \quad t \geq \frac{-1 + \sqrt{5}}{2} \] 6. **Considering the Range of \(\sin x\)**: Since \(\sin x\) must be in the range \([0, 1]\), we only consider: \[ \sin x \geq \frac{-1 + \sqrt{5}}{2} \] 7. **Finding the Upper Bound**: We also know that \(\sin x\) must be less than or equal to 1. Therefore, we need to find the interval for \(\sin x\): \[ 0 < \sin x \leq \frac{-1 + \sqrt{5}}{2} \] 8. **Identifying the Values of \( a \) and \( b \)**: The problem states that \(\sin x\) lies in the interval \( (0, \frac{\sqrt{a} - b}{2}] \). We can compare: \[ \frac{\sqrt{a} - b}{2} = \frac{-1 + \sqrt{5}}{2} \] Multiplying through by 2 gives: \[ \sqrt{a} - b = -1 + \sqrt{5} \] 9. **Solving for \( a \) and \( b \)**: We can set: \[ \sqrt{a} = \sqrt{5}, \quad b = 1 \] Thus: \[ a = 5, \quad b = 1 \] 10. **Finding \( a - b \)**: Finally, we compute: \[ a - b = 5 - 1 = 4 \] ### Final Answer: The value of \( a - b \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If cos^(2)x+sinx+1=0 , then the value of x lies in the interval

If log_(cos x)sin x>=2 and x in[0,3 pi] then sin x lies in the interval

On the interval (0,(pi)/2) the function log sinx is

If (sinx)/(1+cosx)+(sinx)/(1-cosx)=4 and 0^@ le x le 90^@ , then the value of x is

The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

The maximum value of f(x) =2 sin x + sin 2x , in the interval [0, (3)/(2)pi] is

NTA MOCK TESTS-NTA JEE MOCK TEST 34-MATHEMATICS
  1. The value of int(pi)^(2pi)[2sinx]dx is equal to (where [.] represents ...

    Text Solution

    |

  2. If log(cosx)sin x ge 2 and 0le xle 3pi, then the value of sinx lies in...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334)a n d(1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. The population p(t) at a time t of a certain mouse species satisfies t...

    Text Solution

    |

  5. If the area (in sq. units) of the triangle formed by the intersection ...

    Text Solution

    |

  6. The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

    Text Solution

    |

  7. The projection of the line (x-1)/(2)=(y+1)/(1)=(z-2)/(3) on a plane P ...

    Text Solution

    |

  8. Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4). The va...

    Text Solution

    |

  9. Let A=[(-1, 2, -3),(-2,0,3),(3,-3, 1)] be a matrix, then |a| adj(A^(-1...

    Text Solution

    |

  10. A tangent having slope of -4/3 to the ellipse (x^2)/(18)+(y^2)/(32)...

    Text Solution

    |

  11. The locus of a point z represented by the equation |z-1|=|z-i| on the ...

    Text Solution

    |

  12. If (1+x+x^(2))^(25)=a(0)+a(1)x+a(2)x^(2)+……………..a(50)x^(50) then the...

    Text Solution

    |

  13. Let f(x)=2x+1. AA x , then the solution of the equation f(x)=f^(-1)(x...

    Text Solution

    |

  14. A bag contains 5 balls of unknown colours. A ball is drawn at random f...

    Text Solution

    |

  15. The set of points on the axis of the parabola y^(2)-2y-4x+5=0 from whi...

    Text Solution

    |

  16. Let P be a non - singular matrix such that I+P+P^(2)+…….P^(n)=O (where...

    Text Solution

    |

  17. If the mean of 10 observation is 50 and the sum of the square of the d...

    Text Solution

    |

  18. If veca=(3hati-hatj)/(sqrt(10)) and vecb=(hati+3hatj+hatk)/(sqrt(11)),...

    Text Solution

    |

  19. The area bounded by the curve a^(2)y=x^(2)(x+a) and the x-axis is

    Text Solution

    |

  20. The denominator of a fraction exceeds the square of the numberator by ...

    Text Solution

    |