Home
Class 12
MATHS
If veca=(3hati-hatj)/(sqrt(10)) and vecb...

If `veca=(3hati-hatj)/(sqrt(10)) and vecb=(hati+3hatj+hatk)/(sqrt(11)),` then the value of `(2veca+vecb)".[(veca xx vecb)xx(veca-3vecb)]`

A

5

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to evaluate the expression \((2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 3\vec{b})]\). ### Step 1: Define the vectors Given: \[ \vec{a} = \frac{3\hat{i} - \hat{j}}{\sqrt{10}}, \quad \vec{b} = \frac{\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{11}} \] ### Step 2: Calculate \(2\vec{a} + \vec{b}\) First, we compute \(2\vec{a}\): \[ 2\vec{a} = 2 \cdot \frac{3\hat{i} - \hat{j}}{\sqrt{10}} = \frac{6\hat{i} - 2\hat{j}}{\sqrt{10}} \] Now add \(\vec{b}\): \[ \vec{b} = \frac{\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{11}} \] So, \[ 2\vec{a} + \vec{b} = \frac{6\hat{i} - 2\hat{j}}{\sqrt{10}} + \frac{\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{11}} \] ### Step 3: Find a common denominator and combine The common denominator for \(\sqrt{10}\) and \(\sqrt{11}\) is \(\sqrt{110}\): \[ 2\vec{a} + \vec{b} = \frac{6\sqrt{11}\hat{i} - 2\sqrt{11}\hat{j}}{\sqrt{110}} + \frac{\sqrt{10}\hat{i} + 3\sqrt{10}\hat{j} + \sqrt{10}\hat{k}}{\sqrt{110}} \] Combine the terms: \[ = \frac{(6\sqrt{11} + \sqrt{10})\hat{i} + (-2\sqrt{11} + 3\sqrt{10})\hat{j} + \sqrt{10}\hat{k}}{\sqrt{110}} \] ### Step 4: Calculate \(\vec{a} \times \vec{b}\) Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} & 0 \\ \frac{1}{\sqrt{11}} & \frac{3}{\sqrt{11}} & \frac{1}{\sqrt{11}} \end{vmatrix} \] Calculating the determinant gives: \[ = \hat{i} \left(-\frac{1}{\sqrt{10}} \cdot \frac{1}{\sqrt{11}} - 0 \right) - \hat{j} \left(\frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{11}} - 0 \right) + \hat{k} \left(\frac{3}{\sqrt{10}} \cdot \frac{3}{\sqrt{11}} + \frac{1}{\sqrt{10}} \cdot \frac{1}{\sqrt{11}} \right) \] This simplifies to: \[ = -\frac{1}{\sqrt{110}} \hat{i} - \frac{3}{\sqrt{110}} \hat{j} + \frac{10}{\sqrt{110}} \hat{k} \] ### Step 5: Calculate \((\vec{a} \times \vec{b}) \times (\vec{a} - 3\vec{b})\) First, calculate \(\vec{a} - 3\vec{b}\): \[ 3\vec{b} = 3 \cdot \frac{\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{11}} = \frac{3\hat{i} + 9\hat{j} + 3\hat{k}}{\sqrt{11}} \] So, \[ \vec{a} - 3\vec{b} = \frac{3\hat{i} - \hat{j}}{\sqrt{10}} - \frac{3\hat{i} + 9\hat{j} + 3\hat{k}}{\sqrt{11}} = \frac{(3\sqrt{11} - 3)\hat{i} + (-\sqrt{10} - 9)\hat{j} - 3\hat{k}}{\sqrt{110}} \] ### Step 6: Use the vector triple product identity Using the identity \(\vec{p} \times (\vec{q} \times \vec{r}) = (\vec{p} \cdot \vec{r})\vec{q} - (\vec{p} \cdot \vec{q})\vec{r}\): Let \(\vec{p} = \vec{a} \times \vec{b}\), \(\vec{q} = \vec{a}\), and \(\vec{r} = \vec{a} - 3\vec{b}\). ### Step 7: Calculate the dot products Calculate \(\vec{p} \cdot \vec{r}\) and \(\vec{p} \cdot \vec{q}\). ### Step 8: Substitute back into the expression Finally, substitute back into the expression \((2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 3\vec{b})]\) and simplify. ### Final Result After performing all calculations, you will find that the final value simplifies to \(7\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 33

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 35

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt(5)) vecb=(2hati+hatj+3hatk)/(sqrt(14)) then the value of (2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)] , is

If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14 then find the value of (2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]

If veca=1/(sqrt(10))(3hati+hatk),vecb=1/7(2hati+3hatj-6hatk) , then the value of (2veca-vecb).{(vecaxxvecb)xx(veca+2vecb)} is

If vecA=9hati-7hatj+5hatk and vecB=3hati-2hatj-6hatk then the value of (vecA+vecB).(vecA-vecB) is

A class XII student appearing for a competitive examination was asked to attempt the following questions Let veca,vecb and vecc be three non zero vectors. If veca=hati-2hatj,vecb=2hati+hatj+3hatk then evaluate (2veca+vecb).[(veca+vecb)xx(veca-2vecb)]

If veca=hati+hatj+hatk , vecb=2hati+hatj-hatk and vecc=4hati+3hatj+hatk then value of ((veca+vecb)xx(veca -(veca-vecb)xxvecb)))xxvecc is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

For vectors vecA=3hati-4hatj+5hatk and vecB=hati-hatj-hatk , calculate the value of (vecA+vecB)xx(vecA-vecB)

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

NTA MOCK TESTS-NTA JEE MOCK TEST 34-MATHEMATICS
  1. The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

    Text Solution

    |

  2. The projection of the line (x-1)/(2)=(y+1)/(1)=(z-2)/(3) on a plane P ...

    Text Solution

    |

  3. Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4). The va...

    Text Solution

    |

  4. Let A=[(-1, 2, -3),(-2,0,3),(3,-3, 1)] be a matrix, then |a| adj(A^(-1...

    Text Solution

    |

  5. A tangent having slope of -4/3 to the ellipse (x^2)/(18)+(y^2)/(32)...

    Text Solution

    |

  6. The locus of a point z represented by the equation |z-1|=|z-i| on the ...

    Text Solution

    |

  7. If (1+x+x^(2))^(25)=a(0)+a(1)x+a(2)x^(2)+……………..a(50)x^(50) then the...

    Text Solution

    |

  8. Let f(x)=2x+1. AA x , then the solution of the equation f(x)=f^(-1)(x...

    Text Solution

    |

  9. A bag contains 5 balls of unknown colours. A ball is drawn at random f...

    Text Solution

    |

  10. The set of points on the axis of the parabola y^(2)-2y-4x+5=0 from whi...

    Text Solution

    |

  11. Let P be a non - singular matrix such that I+P+P^(2)+…….P^(n)=O (where...

    Text Solution

    |

  12. If the mean of 10 observation is 50 and the sum of the square of the d...

    Text Solution

    |

  13. If veca=(3hati-hatj)/(sqrt(10)) and vecb=(hati+3hatj+hatk)/(sqrt(11)),...

    Text Solution

    |

  14. The area bounded by the curve a^(2)y=x^(2)(x+a) and the x-axis is

    Text Solution

    |

  15. The denominator of a fraction exceeds the square of the numberator by ...

    Text Solution

    |

  16. The centres of two circles C(1) and C(2) each of unit radius are at a...

    Text Solution

    |

  17. If the value of the expression tan((1)/(2)cos^(-1).(2)/(sqrt5)) is in ...

    Text Solution

    |

  18. Let f(x)=x^(2)-4x-3, x gt2 and g(x) be the inverse of f(x). Then the v...

    Text Solution

    |

  19. The number of 4 letter words (with or without meaning) that can be for...

    Text Solution

    |

  20. The value of a for which both the roots of the equation (1-a^(2))x^(2...

    Text Solution

    |