Home
Class 12
MATHS
The value of lim(nrarroo)Sigma(r=1)^(n)(...

The value of `lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r))` is equal to

A

0

B

1

C

6

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2^r + 3^r}{6^r} \), we can break it down step by step. ### Step 1: Rewrite the summation We start by rewriting the expression inside the limit: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2^r + 3^r}{6^r} = \lim_{n \to \infty} \sum_{r=1}^{n} \left( \frac{2^r}{6^r} + \frac{3^r}{6^r} \right) \] This can be simplified to: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \left( \left(\frac{2}{6}\right)^r + \left(\frac{3}{6}\right)^r \right) = \lim_{n \to \infty} \sum_{r=1}^{n} \left( \left(\frac{1}{3}\right)^r + \left(\frac{1}{2}\right)^r \right) \] ### Step 2: Split the summation Now we can split the summation into two separate sums: \[ \lim_{n \to \infty} \left( \sum_{r=1}^{n} \left(\frac{1}{3}\right)^r + \sum_{r=1}^{n} \left(\frac{1}{2}\right)^r \right) \] ### Step 3: Identify the geometric series Both of these sums are geometric series. The formula for the sum of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. For the first series \( \sum_{r=1}^{n} \left(\frac{1}{3}\right)^r \): - \( a = \frac{1}{3} \) - \( r = \frac{1}{3} \) Thus, \[ \sum_{r=1}^{n} \left(\frac{1}{3}\right)^r = \frac{\frac{1}{3} \left(1 - \left(\frac{1}{3}\right)^n\right)}{1 - \frac{1}{3}} = \frac{\frac{1}{3} \left(1 - \left(\frac{1}{3}\right)^n\right)}{\frac{2}{3}} = \frac{1}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) \] For the second series \( \sum_{r=1}^{n} \left(\frac{1}{2}\right)^r \): - \( a = \frac{1}{2} \) - \( r = \frac{1}{2} \) Thus, \[ \sum_{r=1}^{n} \left(\frac{1}{2}\right)^r = \frac{\frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}} = \frac{\frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^n\right)}{\frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^n \] ### Step 4: Combine the results Now we combine the results of both sums: \[ \lim_{n \to \infty} \left( \frac{1}{2} \left(1 - \left(\frac{1}{3}\right)^n\right) + \left(1 - \left(\frac{1}{2}\right)^n\right) \right) \] ### Step 5: Evaluate the limit As \( n \to \infty \), both \( \left(\frac{1}{3}\right)^n \) and \( \left(\frac{1}{2}\right)^n \) approach 0. Therefore, we have: \[ \lim_{n \to \infty} \left( \frac{1}{2} \cdot 1 + 1 \right) = \frac{1}{2} + 1 = \frac{3}{2} \] ### Final Answer Thus, the value of the limit is: \[ \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

lim_(nrarroo) Sigma_(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 35-MATHEMATICS
  1. If f(x)=" min "{(sqrt(9-x^(2)), sqrt(1+x^(2)))}, AA, x in [-3, 3] th...

    Text Solution

    |

  2. Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x...

    Text Solution

    |

  3. Let vecq and vecr be non - collinear vectors, If vecp is a vector such...

    Text Solution

    |

  4. If z(1), z(2) and z(3) are 3 distinct complex numbers such that (3)/(|...

    Text Solution

    |

  5. An ellipse has foci (4, 2), (2, 2) and it passes through the point P (...

    Text Solution

    |

  6. If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is ...

    Text Solution

    |

  7. The value of lim(nrarroo)Sigma(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal ...

    Text Solution

    |

  8. The coefficient of x^(4) in the expansion of (1-x-2x^(2))^(8) is

    Text Solution

    |

  9. The number of roots of the equation tanx+secx=2cosx in [0, 4pi] is

    Text Solution

    |

  10. If a=int(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)cos^(2)(si...

    Text Solution

    |

  11. If the largest interval of x in which the function f(x)=x^(3)-3x+1 is ...

    Text Solution

    |

  12. Let P(1)=x+y+z+1=0, P(2)=x-y+2z+1=0,P(3)=3x+y+4z+7=0 be three planes. ...

    Text Solution

    |

  13. If x(1), x(2), x(3)…..x(34) are numbers such that x(i)=x(i+1)=150, AA ...

    Text Solution

    |

  14. Let (x(1), y(1)), (x(2),y(2)), (x(3),y(3)) and (x(4), y(4)) are four p...

    Text Solution

    |

  15. Let P(n) be s square matrix of order 3 such that P(n)=[a(ij)], where a...

    Text Solution

    |

  16. If the length of direct common tangent and transverse common tangent o...

    Text Solution

    |

  17. Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value o...

    Text Solution

    |

  18. Let A=[(1//2, 3//4),(1, -1//2)], then the value of sum of all the elem...

    Text Solution

    |

  19. Let lx-2y=1 intersects the parabola y^(2)=4ax at points P and Q. If PS...

    Text Solution

    |

  20. If 2 distinct numbers are between 0 to 180 (both inclusive) and the pr...

    Text Solution

    |