Home
Class 12
MATHS
Let P(n) be s square matrix of order 3 s...

Let `P_(n)` be s square matrix of order 3 such that `P_(n)=[a_(ij)]`, where `a_(ij)=(3i+j)/(4^(n))` for `1leile3, 1lejle3`. Then the value of `lim_(nrarroo)T_(r)(4P_(1)+4^(2)P_(2)……….4^(n)P_(n))` is (where `T_(r)(A)` denotes trace of matrix A i.e sum of principle diagonal elements of A)

A

7

B

8

C

`(25)/(3)`

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the matrix \( P_n \) and compute the limit of the trace expression given in the question. ### Step 1: Define the Matrix \( P_n \) The elements of the matrix \( P_n \) are given by: \[ a_{ij} = \frac{3i + j}{4^n} \] for \( i, j = 1, 2, 3 \). Thus, the matrix \( P_n \) can be written as: \[ P_n = \begin{bmatrix} \frac{4}{4^n} & \frac{5}{4^n} & \frac{6}{4^n} \\ \frac{6}{4^n} & \frac{7}{4^n} & \frac{8}{4^n} \\ \frac{9}{4^n} & \frac{10}{4^n} & \frac{11}{4^n} \end{bmatrix} \] ### Step 2: Calculate the Trace of \( P_n \) The trace of a matrix is the sum of its diagonal elements. Therefore, we compute: \[ \text{Trace}(P_n) = a_{11} + a_{22} + a_{33} \] Calculating each term: - \( a_{11} = \frac{4}{4^n} \) - \( a_{22} = \frac{8}{4^n} \) - \( a_{33} = \frac{12}{4^n} \) Thus, the trace becomes: \[ \text{Trace}(P_n) = \frac{4}{4^n} + \frac{8}{4^n} + \frac{12}{4^n} = \frac{24}{4^n} \] ### Step 3: Compute the Expression \( T_r(4P_1 + 4^2P_2 + \ldots + 4^nP_n) \) We need to evaluate: \[ T_r(4P_1 + 4^2P_2 + \ldots + 4^nP_n) \] Using the trace property \( T_r(aA) = aT_r(A) \), we have: \[ T_r(4P_k) = 4 \cdot \text{Trace}(P_k) \] Thus: \[ T_r(4P_1 + 4^2P_2 + \ldots + 4^nP_n) = 4 \cdot \text{Trace}(P_1) + 4^2 \cdot \text{Trace}(P_2) + \ldots + 4^n \cdot \text{Trace}(P_n) \] Substituting the trace values: \[ = 4 \cdot \frac{24}{4^1} + 4^2 \cdot \frac{24}{4^2} + \ldots + 4^n \cdot \frac{24}{4^n} \] This simplifies to: \[ = 24(1 + 1 + \ldots + 1) = 24n \] ### Step 4: Take the Limit as \( n \to \infty \) Now, we need to evaluate: \[ \lim_{n \to \infty} T_r(4P_1 + 4^2P_2 + \ldots + 4^nP_n) \] Since the expression simplifies to \( 24n \), as \( n \to \infty \), this diverges to infinity. ### Conclusion Thus, the limit does not converge to a finite value. The value of the limit is: \[ \lim_{n \to \infty} T_r(4P_1 + 4^2P_2 + \ldots + 4^nP_n) = \infty \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

A is a n xx n matrix (n>2)[a_(ij)] where a_(ij)=cos(((i+j)2 pi)/(n)) Find |A|

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

A is a 2xx2 matrix, such that A={:[(a_(ij))]:} , where a_(ij)=2i-j+1 . The matrix A is

Let M be a square matix of order 3 whose elements are real number and adj(adj M) = [(36,0,-4),(0,6,0),(0,3,6)] , then the absolute value of Tr(M) is [Here, adj P denotes adjoint matrix of P and T_(r) (P) denotes trace of matrix P i.e., sum of all principal diagonal elements of matrix P]

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

If a square matix a of order three is defined A=[a_("ij")] where a_("ij")=s g n(i-j) , then prove that A is skew-symmetric matrix.

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

NTA MOCK TESTS-NTA JEE MOCK TEST 35-MATHEMATICS
  1. If f(x)=" min "{(sqrt(9-x^(2)), sqrt(1+x^(2)))}, AA, x in [-3, 3] th...

    Text Solution

    |

  2. Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x...

    Text Solution

    |

  3. Let vecq and vecr be non - collinear vectors, If vecp is a vector such...

    Text Solution

    |

  4. If z(1), z(2) and z(3) are 3 distinct complex numbers such that (3)/(|...

    Text Solution

    |

  5. An ellipse has foci (4, 2), (2, 2) and it passes through the point P (...

    Text Solution

    |

  6. If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is ...

    Text Solution

    |

  7. The value of lim(nrarroo)Sigma(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal ...

    Text Solution

    |

  8. The coefficient of x^(4) in the expansion of (1-x-2x^(2))^(8) is

    Text Solution

    |

  9. The number of roots of the equation tanx+secx=2cosx in [0, 4pi] is

    Text Solution

    |

  10. If a=int(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)cos^(2)(si...

    Text Solution

    |

  11. If the largest interval of x in which the function f(x)=x^(3)-3x+1 is ...

    Text Solution

    |

  12. Let P(1)=x+y+z+1=0, P(2)=x-y+2z+1=0,P(3)=3x+y+4z+7=0 be three planes. ...

    Text Solution

    |

  13. If x(1), x(2), x(3)…..x(34) are numbers such that x(i)=x(i+1)=150, AA ...

    Text Solution

    |

  14. Let (x(1), y(1)), (x(2),y(2)), (x(3),y(3)) and (x(4), y(4)) are four p...

    Text Solution

    |

  15. Let P(n) be s square matrix of order 3 such that P(n)=[a(ij)], where a...

    Text Solution

    |

  16. If the length of direct common tangent and transverse common tangent o...

    Text Solution

    |

  17. Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value o...

    Text Solution

    |

  18. Let A=[(1//2, 3//4),(1, -1//2)], then the value of sum of all the elem...

    Text Solution

    |

  19. Let lx-2y=1 intersects the parabola y^(2)=4ax at points P and Q. If PS...

    Text Solution

    |

  20. If 2 distinct numbers are between 0 to 180 (both inclusive) and the pr...

    Text Solution

    |