Home
Class 12
MATHS
Let A=[(1//2, 3//4),(1, -1//2)], then th...

Let `A=[(1//2, 3//4),(1, -1//2)]`, then the value of sum of all the elements of `A^(100)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all the elements of the matrix \( A^{100} \), where \( A = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & -\frac{1}{2} \end{pmatrix} \). ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: We start by calculating \( A^2 \) (which is \( A \times A \)): \[ A^2 = A \cdot A = \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & \frac{3}{4} \\ 1 & -\frac{1}{2} \end{pmatrix} \] To perform the multiplication, we calculate each element of the resulting matrix: - Element at (1,1): \[ \frac{1}{2} \cdot \frac{1}{2} + \frac{3}{4} \cdot 1 = \frac{1}{4} + \frac{3}{4} = 1 \] - Element at (1,2): \[ \frac{1}{2} \cdot \frac{3}{4} + \frac{3}{4} \cdot -\frac{1}{2} = \frac{3}{8} - \frac{3}{8} = 0 \] - Element at (2,1): \[ 1 \cdot \frac{1}{2} + -\frac{1}{2} \cdot 1 = \frac{1}{2} - \frac{1}{2} = 0 \] - Element at (2,2): \[ 1 \cdot \frac{3}{4} + -\frac{1}{2} \cdot -\frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 \] Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] where \( I \) is the identity matrix. 2. **Calculate \( A^{100} \)**: Since \( A^2 = I \), we can find \( A^{100} \) as follows: \[ A^{100} = (A^2)^{50} = I^{50} = I \] 3. **Sum of all elements of \( A^{100} \)**: The identity matrix \( I \) is given by: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] The sum of all elements of \( I \) is: \[ 1 + 0 + 0 + 1 = 2 \] ### Final Answer: The value of the sum of all the elements of \( A^{100} \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 34

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A[(1,2,2),(-2,-1,-1),(1,-4,-4)] , then the sum of the elements of A^(-1) is

If A=[(0,1,2),(1,2,3),(3,1,1)] , then the sum of the all the diagonal entries of A^(-1) is

If matrix A=[[1,22,1]] and a non-singular matrix P=[[-1,1a,b]] is such that P^(-1)AP=diag(-1,3), then the sum of all the elements of A^(100) is

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^20 . Then the sum of the elements of the first column of B is

A=[(1,1,1),(0,1,1),(0,0,1)] , then sum of all elements in A+A^2+A^3+ . . . + A^(26) is

Let A=[[alpha,betagamma,delta]] such that A^(3)=0, then sum of all the elements of A^(2) is

Let A = [[1,0,0],[0,1,1],[1,1,1]] and B=A^20. Then the sum of the elements of the first column of B is :

If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}] . Find the sum of all the value of lamda for which there exists a column vertor Xne0 such that AX=lamdaX .

NTA MOCK TESTS-NTA JEE MOCK TEST 35-MATHEMATICS
  1. If f(x)=" min "{(sqrt(9-x^(2)), sqrt(1+x^(2)))}, AA, x in [-3, 3] th...

    Text Solution

    |

  2. Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x...

    Text Solution

    |

  3. Let vecq and vecr be non - collinear vectors, If vecp is a vector such...

    Text Solution

    |

  4. If z(1), z(2) and z(3) are 3 distinct complex numbers such that (3)/(|...

    Text Solution

    |

  5. An ellipse has foci (4, 2), (2, 2) and it passes through the point P (...

    Text Solution

    |

  6. If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is ...

    Text Solution

    |

  7. The value of lim(nrarroo)Sigma(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal ...

    Text Solution

    |

  8. The coefficient of x^(4) in the expansion of (1-x-2x^(2))^(8) is

    Text Solution

    |

  9. The number of roots of the equation tanx+secx=2cosx in [0, 4pi] is

    Text Solution

    |

  10. If a=int(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)cos^(2)(si...

    Text Solution

    |

  11. If the largest interval of x in which the function f(x)=x^(3)-3x+1 is ...

    Text Solution

    |

  12. Let P(1)=x+y+z+1=0, P(2)=x-y+2z+1=0,P(3)=3x+y+4z+7=0 be three planes. ...

    Text Solution

    |

  13. If x(1), x(2), x(3)…..x(34) are numbers such that x(i)=x(i+1)=150, AA ...

    Text Solution

    |

  14. Let (x(1), y(1)), (x(2),y(2)), (x(3),y(3)) and (x(4), y(4)) are four p...

    Text Solution

    |

  15. Let P(n) be s square matrix of order 3 such that P(n)=[a(ij)], where a...

    Text Solution

    |

  16. If the length of direct common tangent and transverse common tangent o...

    Text Solution

    |

  17. Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value o...

    Text Solution

    |

  18. Let A=[(1//2, 3//4),(1, -1//2)], then the value of sum of all the elem...

    Text Solution

    |

  19. Let lx-2y=1 intersects the parabola y^(2)=4ax at points P and Q. If PS...

    Text Solution

    |

  20. If 2 distinct numbers are between 0 to 180 (both inclusive) and the pr...

    Text Solution

    |