Home
Class 12
MATHS
Consider the function f(x)={{:(sin(x-4)....

Consider the function `f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0,x=4):}`, then

A

f(x) is contunuous and differentiable at `x=4`

B

`f(x)` is continuous but non differentiable at x= 4

C

`f(x)` is discontinuous but differentiable at `x=4`

D

f(x) is dicountinuous and non differentiable at x = 4

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity and differentiability of the function \[ f(x) = \begin{cases} \sin(x-4) \tan^{-1}\left(\frac{1}{x-4}\right), & x \neq 4 \\ 0, & x = 4 \end{cases} \] we will follow these steps: ### Step 1: Check for Continuity at \( x = 4 \) To check for continuity at \( x = 4 \), we need to verify that: \[ \lim_{x \to 4} f(x) = f(4) \] We know that \( f(4) = 0 \). #### Finding the Limit: We will calculate the limit as \( x \) approaches 4 from both sides (left-hand limit and right-hand limit). 1. **Left-hand limit (LHL)**: \[ \lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} \sin(x-4) \tan^{-1}\left(\frac{1}{x-4}\right) \] As \( x \to 4^- \), \( x - 4 \to 0^- \) (a small negative number). Thus: - \( \sin(x-4) \to \sin(0) = 0 \) - \( \tan^{-1}\left(\frac{1}{x-4}\right) \to \tan^{-1}(-\infty) = -\frac{\pi}{2} \) Therefore: \[ \lim_{x \to 4^-} f(x) = 0 \cdot \left(-\frac{\pi}{2}\right) = 0 \] 2. **Right-hand limit (RHL)**: \[ \lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sin(x-4) \tan^{-1}\left(\frac{1}{x-4}\right) \] As \( x \to 4^+ \), \( x - 4 \to 0^+ \) (a small positive number). Thus: - \( \sin(x-4) \to \sin(0) = 0 \) - \( \tan^{-1}\left(\frac{1}{x-4}\right) \to \tan^{-1}(\infty) = \frac{\pi}{2} \) Therefore: \[ \lim_{x \to 4^+} f(x) = 0 \cdot \left(\frac{\pi}{2}\right) = 0 \] Since both limits equal \( f(4) \): \[ \lim_{x \to 4} f(x) = 0 = f(4) \] Thus, \( f(x) \) is continuous at \( x = 4 \). ### Step 2: Check for Differentiability at \( x = 4 \) To check for differentiability at \( x = 4 \), we need to find the left-hand derivative (LHD) and right-hand derivative (RHD) at \( x = 4 \). 1. **Left-hand derivative (LHD)**: \[ f'(4^-) = \lim_{h \to 0^-} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0^-} \frac{\sin(h) \tan^{-1}\left(\frac{1}{h}\right) - 0}{h} \] As \( h \to 0^- \): - \( \sin(h) \approx h \) - \( \tan^{-1}\left(\frac{1}{h}\right) \to -\frac{\pi}{2} \) Therefore: \[ f'(4^-) = \lim_{h \to 0^-} \frac{h \cdot \left(-\frac{\pi}{2}\right)}{h} = -\frac{\pi}{2} \] 2. **Right-hand derivative (RHD)**: \[ f'(4^+) = \lim_{h \to 0^+} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0^+} \frac{\sin(h) \tan^{-1}\left(\frac{1}{h}\right) - 0}{h} \] As \( h \to 0^+ \): - \( \sin(h) \approx h \) - \( \tan^{-1}\left(\frac{1}{h}\right) \to \frac{\pi}{2} \) Therefore: \[ f'(4^+) = \lim_{h \to 0^+} \frac{h \cdot \left(\frac{\pi}{2}\right)}{h} = \frac{\pi}{2} \] Since \( f'(4^-) = -\frac{\pi}{2} \) and \( f'(4^+) = \frac{\pi}{2} \), we conclude that: \[ f'(4^-) \neq f'(4^+) \] Thus, \( f(x) \) is not differentiable at \( x = 4 \). ### Final Conclusion The function \( f(x) \) is continuous at \( x = 4 \) but not differentiable at \( x = 4 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

Examine the continuity of the function : f(x)={{:((|x-4|)/((x-4))", if "xne4),(0" , if "x=4):} at x = 4.

Range of the function f(x)=sin^(-1)x+2tan^(-1)x+x^(2)+4x+3 is

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Consider the function f:R to R defined by f(x)={((2-sin((1)/(x)))|x|,",",x ne 0),(0,",",x=0):} .Then f is :

The function f(x)=(sin^(4)x+cos^(4)x)/(x+tan x) is :

NTA MOCK TESTS-NTA JEE MOCK TEST 38-MATHEMATICS
  1. The fourth term of the arithmetic - geometric progression 6, 8, 8, ………...

    Text Solution

    |

  2. If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)), ...

    Text Solution

    |

  3. Consider the function f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0...

    Text Solution

    |

  4. The solution of the differential equation xdy=(tan y+(e^(1)//x^(2))/(x...

    Text Solution

    |

  5. Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vec...

    Text Solution

    |

  6. If two distinct numbers a and be are selected from the set {5^(1), 5^(...

    Text Solution

    |

  7. If z and w are two non - zero complex numbers such that |zw|=1 and ar...

    Text Solution

    |

  8. Let f:R rarr B be a functio defined by f(x)=tan^(-1).(2x)/(1+x^(2)), t...

    Text Solution

    |

  9. The value of lim(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equa...

    Text Solution

    |

  10. "cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1, If theta belongs to

    Text Solution

    |

  11. The coefficient of x^(2) in the expansion of (1-x+2x^(2))(x+(1)/(x))^(...

    Text Solution

    |

  12. The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(...

    Text Solution

    |

  13. The number of local minima/maximum for the function y=x^(2)-2sinx, AA ...

    Text Solution

    |

  14. Consider A=int(0)^(1)(dx)/(1+x^(3)), then A satisfies

    Text Solution

    |

  15. If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B(n)=adj(B(n-1), AA n in N and...

    Text Solution

    |

  16. A plane passes through the point (-2, -2, 2) and contains the line joi...

    Text Solution

    |

  17. If the number of integral solutions (x, y, z) of the equation xyz = 18...

    Text Solution

    |

  18. The ratio of the variance of first n positive integral multiples of 4 ...

    Text Solution

    |

  19. If f:R rarr R is a function satisfying the equation f(3x+1)+f(3x+10)=1...

    Text Solution

    |

  20. Let (alpha, beta) be an ordered pair of real numbers satisfying the eq...

    Text Solution

    |