Home
Class 12
MATHS
"cosec"^(2)theta(cos^(2)theta-3cos theta...

`"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1`, If `theta` belongs to

A

`(0, (pi)/(3))`

B

`((pi)/(2), pi)`

C

`((pi)/(3), (pi)/(2))`

D

`(0, (pi)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \csc^2 \theta (\cos^2 \theta - 3 \cos \theta + 2) \geq 1 \), we will follow these steps: ### Step 1: Rewrite the inequality We know that \( \csc^2 \theta = \frac{1}{\sin^2 \theta} \). Therefore, we can rewrite the inequality as: \[ \frac{1}{\sin^2 \theta} (\cos^2 \theta - 3 \cos \theta + 2) \geq 1 \] ### Step 2: Multiply both sides by \( \sin^2 \theta \) Assuming \( \sin^2 \theta > 0 \) (since \( \theta \) cannot be \( n\pi \), where \( n \) is an integer), we multiply both sides by \( \sin^2 \theta \): \[ \cos^2 \theta - 3 \cos \theta + 2 \geq \sin^2 \theta \] ### Step 3: Substitute \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can substitute: \[ \cos^2 \theta - 3 \cos \theta + 2 \geq 1 - \cos^2 \theta \] ### Step 4: Rearrange the inequality Bringing all terms to one side gives: \[ \cos^2 \theta + \cos^2 \theta - 3 \cos \theta + 2 - 1 \geq 0 \] This simplifies to: \[ 2 \cos^2 \theta - 3 \cos \theta + 1 \geq 0 \] ### Step 5: Factor the quadratic expression Now we will factor the quadratic: \[ (2 \cos \theta - 1)(\cos \theta - 1) \geq 0 \] ### Step 6: Find the critical points Setting each factor to zero gives us the critical points: 1. \( 2 \cos \theta - 1 = 0 \) → \( \cos \theta = \frac{1}{2} \) 2. \( \cos \theta - 1 = 0 \) → \( \cos \theta = 1 \) ### Step 7: Analyze the intervals The critical points divide the number line into intervals. We will test the sign of the expression in each interval: 1. \( (-\infty, 1) \) 2. \( (1, \frac{1}{2}) \) 3. \( (\frac{1}{2}, \infty) \) ### Step 8: Test values in each interval - For \( \theta = 0 \) (in \( (-\infty, 1) \)): \( \cos(0) = 1 \) → \( (2(1) - 1)(1 - 1) = 0 \) (satisfies) - For \( \theta = \frac{\pi}{3} \) (in \( (1, \frac{1}{2}) \)): \( \cos(\frac{\pi}{3}) = \frac{1}{2} \) → \( (2(\frac{1}{2}) - 1)(\frac{1}{2} - 1) = 0 \) (satisfies) - For \( \theta = \frac{\pi}{4} \) (in \( (\frac{1}{2}, \infty) \)): \( \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \) → \( (2(\frac{\sqrt{2}}{2}) - 1)(\frac{\sqrt{2}}{2} - 1) < 0 \) (does not satisfy) ### Step 9: Determine the solution set The solution set is where the product is non-negative, which includes the intervals where the expression is zero or positive: \[ \cos \theta \in (-\infty, 1] \cup [\frac{1}{2}, \infty) \] ### Step 10: Convert back to \( \theta \) The corresponding values of \( \theta \) are: - \( \theta = 0 \) to \( \theta = \frac{\pi}{3} \) (for \( \cos \theta = \frac{1}{2} \)) - \( \theta = \frac{\pi}{3} \) to \( \theta = \frac{\pi}{2} \) (for \( \cos \theta = 1 \)) Thus, the final answer is: \[ \theta \in \left[0, \frac{\pi}{3}\right] \cup \left[\frac{\pi}{2}, \pi\right] \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Solve cosec^(2)theta-cot^(2) theta=cos theta .

(1-cos^2 theta) cosec^2 theta=1

cosec theta sqrt(1-cos^(2)theta)=1

sec^(2)theta+csc^(2)theta=sec^(2)theta xx cos e^(2)theta

(sqrt((cosec^(2)theta-1)))/(cosec theta)=cos theta

csc theta(1+cos theta)(csc theta-cot theta)=1

If l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) theta+1)/("cosec"^(2) theta -1)) then what is the value of tan^(2) theta .

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

NTA MOCK TESTS-NTA JEE MOCK TEST 38-MATHEMATICS
  1. If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)), ...

    Text Solution

    |

  2. Consider the function f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0...

    Text Solution

    |

  3. The solution of the differential equation xdy=(tan y+(e^(1)//x^(2))/(x...

    Text Solution

    |

  4. Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vec...

    Text Solution

    |

  5. If two distinct numbers a and be are selected from the set {5^(1), 5^(...

    Text Solution

    |

  6. If z and w are two non - zero complex numbers such that |zw|=1 and ar...

    Text Solution

    |

  7. Let f:R rarr B be a functio defined by f(x)=tan^(-1).(2x)/(1+x^(2)), t...

    Text Solution

    |

  8. The value of lim(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equa...

    Text Solution

    |

  9. "cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1, If theta belongs to

    Text Solution

    |

  10. The coefficient of x^(2) in the expansion of (1-x+2x^(2))(x+(1)/(x))^(...

    Text Solution

    |

  11. The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(...

    Text Solution

    |

  12. The number of local minima/maximum for the function y=x^(2)-2sinx, AA ...

    Text Solution

    |

  13. Consider A=int(0)^(1)(dx)/(1+x^(3)), then A satisfies

    Text Solution

    |

  14. If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B(n)=adj(B(n-1), AA n in N and...

    Text Solution

    |

  15. A plane passes through the point (-2, -2, 2) and contains the line joi...

    Text Solution

    |

  16. If the number of integral solutions (x, y, z) of the equation xyz = 18...

    Text Solution

    |

  17. The ratio of the variance of first n positive integral multiples of 4 ...

    Text Solution

    |

  18. If f:R rarr R is a function satisfying the equation f(3x+1)+f(3x+10)=1...

    Text Solution

    |

  19. Let (alpha, beta) be an ordered pair of real numbers satisfying the eq...

    Text Solution

    |

  20. The sum of the real roots of the equation x^(5)-5x^(4)+9x^(3)-9x^(2)+5...

    Text Solution

    |