Home
Class 12
MATHS
If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], ...

If `B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N` and I is an identity matrix of order 3, then `B_(1)+B_(3)+B_(5)+B_(7)+B_(9)` is equal to

A

`B_(0)`

B

`5B_(0)`

C

`25B_(0)`

D

`5I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( B_1 + B_3 + B_5 + B_7 + B_9 \) where \( B_n \) is defined as the adjoint of \( B_{n-1} \) and \( B_0 \) is given as: \[ B_0 = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] ### Step 1: Calculate \( B_1 \) We start by calculating \( B_1 \), which is defined as \( B_1 = \text{adj}(B_0) \). To find the adjoint of a matrix, we need to calculate the cofactor matrix and then take its transpose. #### Cofactor Calculation 1. **Cofactor of \( -4 \)** (Element at (1,1)): - Minor matrix after removing the first row and first column: \[ \begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix} \] - Determinant: \( (0)(3) - (1)(4) = -4 \) - Cofactor: \( (-1)^{1+1} \cdot (-4) = -4 \) 2. **Cofactor of \( -3 \)** (Element at (1,2)): - Minor matrix: \[ \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} \] - Determinant: \( (1)(3) - (1)(4) = -1 \) - Cofactor: \( (-1)^{1+2} \cdot (-1) = 1 \) 3. **Cofactor of \( -3 \)** (Element at (1,3)): - Minor matrix: \[ \begin{pmatrix} 1 & 0 \\ 4 & 4 \end{pmatrix} \] - Determinant: \( (1)(4) - (0)(4) = 4 \) - Cofactor: \( (-1)^{1+3} \cdot 4 = 4 \) Continuing this process for all elements, we find the cofactor matrix: \[ \text{Cofactor}(B_0) = \begin{pmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{pmatrix} \] #### Transpose of Cofactor Matrix Now we take the transpose of the cofactor matrix to get \( B_1 \): \[ B_1 = \text{adj}(B_0) = \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} \] ### Step 2: Calculate \( B_2 \) Next, we calculate \( B_2 \): \[ B_2 = \text{adj}(B_1) = B_0 \] ### Step 3: Generalize for \( B_n \) Continuing this process, we find that: - \( B_3 = \text{adj}(B_2) = B_1 = B_0 \) - \( B_4 = \text{adj}(B_3) = B_2 = B_0 \) - \( B_5 = \text{adj}(B_4) = B_3 = B_0 \) - \( B_6 = \text{adj}(B_5) = B_4 = B_0 \) - \( B_7 = \text{adj}(B_6) = B_5 = B_0 \) - \( B_8 = \text{adj}(B_7) = B_6 = B_0 \) - \( B_9 = \text{adj}(B_8) = B_7 = B_0 \) ### Step 4: Calculate the Final Sum Now we can calculate the sum: \[ B_1 + B_3 + B_5 + B_7 + B_9 = B_0 + B_0 + B_0 + B_0 + B_0 = 5B_0 \] ### Step 5: Final Result Calculating \( 5B_0 \): \[ 5B_0 = 5 \begin{pmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{pmatrix} = \begin{pmatrix} -20 & -15 & -15 \\ 5 & 0 & 5 \\ 20 & 20 & 15 \end{pmatrix} \] Thus, the final answer is: \[ \begin{pmatrix} -20 & -15 & -15 \\ 5 & 0 & 5 \\ 20 & 20 & 15 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0)= [[-4,-4,-4],[1,0,1],[4,4,3]] and B_(n) = adj (B_(n-1)),n inN and I is an dientity matrix of order 3. B_(2) + B_(3) + B_(4) +...+ B_(50) is equal to

If A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0) [[-4,-4,-4],[1,0,1],[4,4,3]] and B_(n) = adj (B_(n-1)),n inN and I is an dientity matrix of order 3. det (A_(0) + A_(0)^(2) B_(0) ^(2) + A_(0)^(2) + A_(0) ^(4) B_(0)^(4) + ... upto 12 terms ) is equal to

If A_(0) = [[2 ,-2,-4],[-1,3,4],[1,-2,-3]] and B_(0) =[[-4,-4,-4],[1,0,1],[4,4,3]] and B_(n) = adj (B_(n-1)),n inN and I is an dientity matrix of order 3. For a variable matrix X, the equation A_(0) X = B_(0) will heve

Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is an identity matrix of order 3 xx 3 if B = [b_(ij)] then b_(13) is equal to __________ .

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

A_(1), A_(2), A_(3), ……, A_(n) " and " B_(1), B_(2), B_(3), …., B_(n) are non-singular square matrices of order n such that A_(1)B_(1) = I_(n), A_(2)B_(2) = I_(n), A_(3)B_(3) = I_(n),……A_(n)B_(n) = I_(n) " then"(A_(1) A_(2)A_(3)….. A_(n))^(-1) = ______.

If A={4^(n)-3n-1:n in N) and B={9(n-1):n in N} then

Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1,-2,-1):}] and B =adj (adj A) . If |A| = lambda and |(B^(-1))^T| = mu then the ordered pair (|lambda|, mu) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 38-MATHEMATICS
  1. If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)), ...

    Text Solution

    |

  2. Consider the function f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0...

    Text Solution

    |

  3. The solution of the differential equation xdy=(tan y+(e^(1)//x^(2))/(x...

    Text Solution

    |

  4. Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vec...

    Text Solution

    |

  5. If two distinct numbers a and be are selected from the set {5^(1), 5^(...

    Text Solution

    |

  6. If z and w are two non - zero complex numbers such that |zw|=1 and ar...

    Text Solution

    |

  7. Let f:R rarr B be a functio defined by f(x)=tan^(-1).(2x)/(1+x^(2)), t...

    Text Solution

    |

  8. The value of lim(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equa...

    Text Solution

    |

  9. "cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1, If theta belongs to

    Text Solution

    |

  10. The coefficient of x^(2) in the expansion of (1-x+2x^(2))(x+(1)/(x))^(...

    Text Solution

    |

  11. The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(...

    Text Solution

    |

  12. The number of local minima/maximum for the function y=x^(2)-2sinx, AA ...

    Text Solution

    |

  13. Consider A=int(0)^(1)(dx)/(1+x^(3)), then A satisfies

    Text Solution

    |

  14. If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B(n)=adj(B(n-1), AA n in N and...

    Text Solution

    |

  15. A plane passes through the point (-2, -2, 2) and contains the line joi...

    Text Solution

    |

  16. If the number of integral solutions (x, y, z) of the equation xyz = 18...

    Text Solution

    |

  17. The ratio of the variance of first n positive integral multiples of 4 ...

    Text Solution

    |

  18. If f:R rarr R is a function satisfying the equation f(3x+1)+f(3x+10)=1...

    Text Solution

    |

  19. Let (alpha, beta) be an ordered pair of real numbers satisfying the eq...

    Text Solution

    |

  20. The sum of the real roots of the equation x^(5)-5x^(4)+9x^(3)-9x^(2)+5...

    Text Solution

    |