Home
Class 12
MATHS
The ratio of the variance of first n pos...

The ratio of the variance of first n positive integral multiples of 4 to the variance of first n positive odd number is

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio of the variance of the first \( n \) positive integral multiples of 4 to the variance of the first \( n \) positive odd numbers, we can follow these steps: ### Step 1: Identify the sequences 1. The first \( n \) positive integral multiples of 4 are: \[ 4, 8, 12, \ldots, 4n \] This can be expressed as: \[ 4 \times (1, 2, 3, \ldots, n) \] 2. The first \( n \) positive odd numbers are: \[ 1, 3, 5, \ldots, (2n - 1) \] ### Step 2: Calculate the variance of the first \( n \) multiples of 4 The variance \( \sigma^2 \) of a set of numbers \( x_1, x_2, \ldots, x_n \) is given by: \[ \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left( \frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 \] For the sequence \( 4, 8, 12, \ldots, 4n \): - The mean \( \mu \) is: \[ \mu = \frac{4 + 8 + 12 + \ldots + 4n}{n} = \frac{4(1 + 2 + 3 + \ldots + n)}{n} = \frac{4 \cdot \frac{n(n+1)}{2}}{n} = 2(n + 1) \] - The sum of squares \( \sum_{i=1}^{n} (4i)^2 \): \[ \sum_{i=1}^{n} (4i)^2 = 16 \sum_{i=1}^{n} i^2 = 16 \cdot \frac{n(n+1)(2n+1)}{6} \] - Therefore, the variance of the first \( n \) multiples of 4 is: \[ \sigma^2 = \frac{1}{n} \cdot 16 \cdot \frac{n(n+1)(2n+1)}{6} - (2(n + 1))^2 \] ### Step 3: Calculate the variance of the first \( n \) odd numbers For the sequence \( 1, 3, 5, \ldots, (2n - 1) \): - The mean \( \mu \) is: \[ \mu = \frac{1 + 3 + 5 + \ldots + (2n - 1)}{n} = \frac{n^2}{n} = n \] - The sum of squares \( \sum_{i=1}^{n} (2i - 1)^2 \): \[ \sum_{i=1}^{n} (2i - 1)^2 = \sum_{i=1}^{n} (4i^2 - 4i + 1) = 4\sum_{i=1}^{n} i^2 - 4\sum_{i=1}^{n} i + n = 4 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + n \] - Therefore, the variance of the first \( n \) odd numbers is: \[ \sigma^2 = \frac{1}{n} \left( 4 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + n \right) - n^2 \] ### Step 4: Find the ratio of the variances Now we can find the ratio of the variances: \[ \text{Ratio} = \frac{\text{Variance of multiples of 4}}{\text{Variance of odd numbers}} = \frac{16 \cdot \text{Variance of } (1, 2, 3, \ldots, n)}{4 \cdot \text{Variance of } (1, 2, 3, \ldots, n)} \] This simplifies to: \[ \text{Ratio} = \frac{16}{4} = 4 \] ### Final Result Thus, the ratio of the variance of the first \( n \) positive integral multiples of 4 to the variance of the first \( n \) positive odd numbers is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 37

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 39

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The variance of the first 20 positive integral multiples of 4 is equal to

The variance of first 20- natural numbers is

NTA MOCK TESTS-NTA JEE MOCK TEST 38-MATHEMATICS
  1. If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)), ...

    Text Solution

    |

  2. Consider the function f(x)={{:(sin(x-4).tan^(-1)((1)/(x-4)),x ne 4),(0...

    Text Solution

    |

  3. The solution of the differential equation xdy=(tan y+(e^(1)//x^(2))/(x...

    Text Solution

    |

  4. Let veca,vecb and vecc be three vectors such that vecane0, |veca|=|vec...

    Text Solution

    |

  5. If two distinct numbers a and be are selected from the set {5^(1), 5^(...

    Text Solution

    |

  6. If z and w are two non - zero complex numbers such that |zw|=1 and ar...

    Text Solution

    |

  7. Let f:R rarr B be a functio defined by f(x)=tan^(-1).(2x)/(1+x^(2)), t...

    Text Solution

    |

  8. The value of lim(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equa...

    Text Solution

    |

  9. "cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1, If theta belongs to

    Text Solution

    |

  10. The coefficient of x^(2) in the expansion of (1-x+2x^(2))(x+(1)/(x))^(...

    Text Solution

    |

  11. The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(...

    Text Solution

    |

  12. The number of local minima/maximum for the function y=x^(2)-2sinx, AA ...

    Text Solution

    |

  13. Consider A=int(0)^(1)(dx)/(1+x^(3)), then A satisfies

    Text Solution

    |

  14. If B(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B(n)=adj(B(n-1), AA n in N and...

    Text Solution

    |

  15. A plane passes through the point (-2, -2, 2) and contains the line joi...

    Text Solution

    |

  16. If the number of integral solutions (x, y, z) of the equation xyz = 18...

    Text Solution

    |

  17. The ratio of the variance of first n positive integral multiples of 4 ...

    Text Solution

    |

  18. If f:R rarr R is a function satisfying the equation f(3x+1)+f(3x+10)=1...

    Text Solution

    |

  19. Let (alpha, beta) be an ordered pair of real numbers satisfying the eq...

    Text Solution

    |

  20. The sum of the real roots of the equation x^(5)-5x^(4)+9x^(3)-9x^(2)+5...

    Text Solution

    |