Home
Class 12
MATHS
Let A=|a(ij)|" be a "3xx3 matrix where a...

Let `A=|a_(ij)|" be a "3xx3` matrix where `a_(ij)={{:((i^(j)-j^(i)+2ij)x,iltj),(1,igtj","),(0,i=j):}`, then the minimum value of `|A|` is equal to (where x is a real number)

A

`(1)/(4)`

B

`-(8)/(33)`

C

7

D

`-(4)/(33)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant of the matrix \( A = |a_{ij}| \) where \( a_{ij} \) is defined as follows: \[ a_{ij} = \begin{cases} i^j - j^i + 2ijx & \text{if } i < j \\ 1 & \text{if } i > j \\ 0 & \text{if } i = j \end{cases} \] We will construct the \( 3 \times 3 \) matrix \( A \) and then calculate its determinant. ### Step 1: Construct the Matrix \( A \) The elements of the matrix \( A \) can be filled as follows: - For \( i = 1 \): - \( a_{11} = 0 \) - \( a_{12} = 1^2 - 2^1 + 2 \cdot 1 \cdot 2 \cdot x = 1 - 2 + 4x = 4x - 1 \) - \( a_{13} = 1^3 - 3^1 + 2 \cdot 1 \cdot 3 \cdot x = 1 - 3 + 6x = 6x - 2 \) - For \( i = 2 \): - \( a_{21} = 1 \) - \( a_{22} = 0 \) - \( a_{23} = 2^3 - 3^2 + 2 \cdot 2 \cdot 3 \cdot x = 8 - 9 + 12x = 12x - 1 \) - For \( i = 3 \): - \( a_{31} = 1 \) - \( a_{32} = 1 \) - \( a_{33} = 0 \) Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 0 & 4x - 1 & 6x - 2 \\ 1 & 0 & 12x - 1 \\ 1 & 1 & 0 \end{pmatrix} \] ### Step 2: Calculate the Determinant of Matrix \( A \) To calculate the determinant \( |A| \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ |A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the values from matrix \( A \): \[ |A| = 0 \cdot (0 \cdot 0 - (12x - 1) \cdot 1) - (4x - 1)(1 \cdot 0 - (12x - 1) \cdot 1) + (6x - 2)(1 \cdot 1 - 0 \cdot 1) \] This simplifies to: \[ |A| = 0 - (4x - 1)(-12x + 1) + (6x - 2)(1) \] Calculating each term: 1. \( (4x - 1)(-12x + 1) = -48x^2 + 4x + 12x - 1 = -48x^2 + 16x - 1 \) 2. \( (6x - 2)(1) = 6x - 2 \) Combining these: \[ |A| = 48x^2 - 16x + 1 + 6x - 2 \] \[ |A| = 48x^2 - 10x - 1 \] ### Step 3: Find the Minimum Value of the Determinant To find the minimum value of the quadratic \( |A| = 48x^2 - 10x - 1 \), we can use the vertex formula \( x = -\frac{b}{2a} \): \[ x = -\frac{-10}{2 \cdot 48} = \frac{10}{96} = \frac{5}{48} \] Substituting \( x = \frac{5}{48} \) back into the determinant: \[ |A| = 48\left(\frac{5}{48}\right)^2 - 10\left(\frac{5}{48}\right) - 1 \] \[ = 48 \cdot \frac{25}{2304} - \frac{50}{48} - 1 \] \[ = \frac{1200}{2304} - \frac{50}{48} - 1 \] \[ = \frac{1200}{2304} - \frac{2400}{2304} - \frac{2304}{2304} \] \[ = \frac{1200 - 2400 - 2304}{2304} = \frac{-3504}{2304} \] Thus, the minimum value of \( |A| \) is: \[ \text{Minimum value of } |A| = -\frac{3504}{2304} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 43

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let A = {a _(ij)} be a 3 xx 3 matrix, where a_(ij) {{:( (-1) ^( j -i) if i lt j","),( 2 if i=j","),( (-1) ^(i+j) if i gt j","):} then det (3 Adj (2 A ^(-1))) is equal to _____________

Let A=a_(ij) be a matrix of order 3, where a_(ij)={{:(x,,if i=j","x in R),(1,,if |i-j|=1),(0,,"otherwise"):} then which of the following hold good :

If A=[a_(ij)] is a 2xx2 matrix such that a_(ij)=i+2j, write A

Construct a 2xx2 matrix, where (i) a_("ij")=((i-2j)^(2))/(2) (ii) a_("ij")=|-2i+3j|

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

Let A = [a_(ij)] be a 3 xx 3 matrix, where a_(ij)={{:(1,",",ifi=j),(-x,",",if|i-j|=1),(2x+1,",","otherwise"):} Let a function f : R to R be defined as f(x) = det (A). Then the sum of maximum and minimum values of f on R is equal to:

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

Given A=[a_(ij)]3xx3 be a matrix, where a_(ij)={i-j if i != j and i^2 if 1=j If C_(ij) be the cofactor of a_(ij), in the matrix A and B = [b_(ij)]3xx3 be a matrix such that bch that b_(ij)=sum_(k=1)^3 a_(ij) c_(jk), then the value of [(3sqrt(det B))/8] is equal to(where denotes greatest integer function and det B denotes determinant value of B)

NTA MOCK TESTS-NTA JEE MOCK TEST 44-MATHEMATICS
  1. Consider A =int(0)^((pi)/(4))(sin(2x))/(x)dx, then

    Text Solution

    |

  2. The locus of the mid - points of the chords of the hyperbola 3x^(2)-2y...

    Text Solution

    |

  3. The difference between the maximum and minimum values of the function ...

    Text Solution

    |

  4. The solution of the differential equation (dy)/(dx)=(x-y)/(x+4y) is (w...

    Text Solution

    |

  5. The value of lim(xrarr0)(1-cos^(3)(sinx))/(sinxsin(sinx)cos(sinx))

    Text Solution

    |

  6. Let the normals at points A(4a, -4a) and B(9a, -6a) on the parabola y^...

    Text Solution

    |

  7. The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-5x+5...

    Text Solution

    |

  8. ABC is an acute angled triangle with circumcenter O and orthocentre H....

    Text Solution

    |

  9. Consider a skew - symmetric matrix A=[(a,b),(-b, c)] such that a, b an...

    Text Solution

    |

  10. Let A=|a(ij)|" be a "3xx3 matrix where a(ij)={{:((i^(j)-j^(i)+2ij)x,il...

    Text Solution

    |

  11. Consider on experiment of a single throw of a pair of unbiased normal ...

    Text Solution

    |

  12. Which of the following statements is false when p is true and q is fal...

    Text Solution

    |

  13. For a comple number Z, if |Z-1+i|+|Z+i|=1, then the range of the princ...

    Text Solution

    |

  14. Let f:ArarrB is a function defined by f(x)=(2x)/(1+x^(2)). If the func...

    Text Solution

    |

  15. Two data sets each of size 10 has the variance as 4 and k and the corr...

    Text Solution

    |

  16. If S=1(25)+2(24)+3(23)+…………..+24(2)+25(1) then the value of (S)/(900) ...

    Text Solution

    |

  17. The area (in sq. units) bounded by the curve f(x)=max(|x|-1, 1-|x|) wi...

    Text Solution

    |

  18. Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)), then the value of 17f'(2) is e...

    Text Solution

    |

  19. Let P(1, 2, 3) be a point in space and Q be a point on the line (x-1)/...

    Text Solution

    |

  20. Let the lengths of the altitudes from the vertices A(-1, 1), B(5, 2), ...

    Text Solution

    |