Home
Class 12
MATHS
The value of lim(nrarroo)((1)/(2n)+(1)/(...

The value of `lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n))` is equal to

A

`e^(2)`

B

ln 2

C

ln 4

D

3 ln 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2} + \ldots + \frac{1}{4n} \right), \] we will follow these steps: ### Step 1: Identify the terms in the summation The summation consists of terms from \(\frac{1}{2n}\) to \(\frac{1}{4n}\). The number of terms can be calculated as follows: - The first term is \(\frac{1}{2n}\) (when \(r=0\)). - The last term is \(\frac{1}{4n}\) (when \(r=2n\)). Thus, the general term can be expressed as: \[ \frac{1}{2n + r} \quad \text{for } r = 0, 1, 2, \ldots, 2n. \] ### Step 2: Rewrite the limit as a summation We can rewrite the limit as: \[ \lim_{n \to \infty} \sum_{r=0}^{2n} \frac{1}{2n + r}. \] ### Step 3: Factor out \(\frac{1}{n}\) To facilitate the evaluation, we can factor out \(\frac{1}{n}\) from the denominator: \[ \sum_{r=0}^{2n} \frac{1}{2n + r} = \sum_{r=0}^{2n} \frac{1/n}{2/n + r/n} = \frac{1}{n} \sum_{r=0}^{2n} \frac{1}{\frac{2}{n} + \frac{r}{n}}. \] ### Step 4: Convert the summation to an integral As \(n\) approaches infinity, the sum can be approximated by an integral. Let \(t = \frac{r}{n}\), then \(dt = \frac{1}{n}\) and the limits change from \(0\) to \(2\): \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{2n} \frac{1}{\frac{2}{n} + \frac{r}{n}} \approx \int_{0}^{2} \frac{1}{2 + t} dt. \] ### Step 5: Evaluate the integral Now we compute the integral: \[ \int_{0}^{2} \frac{1}{2 + t} dt. \] The antiderivative of \(\frac{1}{2 + t}\) is \(\ln |2 + t|\). Thus, we evaluate: \[ \left[ \ln(2 + t) \right]_{0}^{2} = \ln(4) - \ln(2) = \ln\left(\frac{4}{2}\right) = \ln(2). \] ### Final Result Therefore, the value of the limit is: \[ \lim_{n \to \infty} \left( \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2} + \ldots + \frac{1}{4n} \right) = \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 49

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of lim_(n rarr oo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(4n)

lim_(n rarr oo)[(1)/(n)+(1)/(n+1)+(1)/(n+2)+.....+(1)/(2n)]

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 48-MATHEMATICS
  1. Given that a(4)+a(8)+a(12)+a(16)=224, the sum of the first nineteen te...

    Text Solution

    |

  2. If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)...

    Text Solution

    |

  3. The value of lim(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n))...

    Text Solution

    |

  4. If alpha and beta are the solution of cotx=-sqrt3 in [0, 2pi] and alph...

    Text Solution

    |

  5. If f : R to R be a function such that f(x)=x^(3)+x^(2)+3x +sinx, th...

    Text Solution

    |

  6. If y=x+c touches the ellipse 3x^(2)+4y^(2)=12 at the point P, then th...

    Text Solution

    |

  7. If f(x)={{:(a+cos^(-1)(x+b),":",xge1),(-x,":",xlt1):} is differentiabl...

    Text Solution

    |

  8. If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48...

    Text Solution

    |

  9. Two cyclists start from the junction of two perpendicular roads, there...

    Text Solution

    |

  10. The value of int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx is (wh...

    Text Solution

    |

  11. The number of polynomials of the form x^(3)+ax^(2)+bx+c that are divis...

    Text Solution

    |

  12. If the circle x^(2)+y^(2)-10x+16y+89-r^(2)=0 and x^(2)+y^(2)+6x-14y+42...

    Text Solution

    |

  13. The differential equation of the family of curves whose tangent at any...

    Text Solution

    |

  14. The length of two opposite edges of a tetrahedron are 12 and 15 units ...

    Text Solution

    |

  15. If 4 distinct numbers are chosen randomly from the first 100 natural n...

    Text Solution

    |

  16. If the system of equations x-ky+3z=0, 2x+ky-2z=0 and 3x-4y+2z=0 ha...

    Text Solution

    |

  17. The statement (~(phArr q))^^p is equivalent to

    Text Solution

    |

  18. Mid point of A(0, 0) and B(1024, 2048) is A1. mid point of A1 and B ...

    Text Solution

    |

  19. In ten observation, the mean of all 10 numbers is 15, the mean of the ...

    Text Solution

    |

  20. If A is a non - null diagonal matrix of order 3 such that A^(4)=A^(2),...

    Text Solution

    |