Home
Class 12
MATHS
If alpha, beta and gamma are the roots o...

If `alpha, beta and gamma` are the roots of the equation `x^(3)-13x^(2)+15x+189=0` and one root exceeds the other by 2, then the value of `|alpha|+|beta|+|gamma|` is equal to

A

23

B

17

C

13

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the cubic equation \( x^3 - 13x^2 + 15x + 189 = 0 \) with roots \( \alpha, \beta, \gamma \), where one root exceeds another by 2, we can follow these steps: ### Step 1: Identify the relationship between the roots Let’s assume \( \alpha = x \), \( \beta = x + 2 \), and \( \gamma \) is the third root. According to Vieta's formulas, we know: - \( \alpha + \beta + \gamma = 13 \) - \( \alpha \beta + \beta \gamma + \gamma \alpha = 15 \) - \( \alpha \beta \gamma = -189 \) ### Step 2: Substitute the values of \( \alpha \) and \( \beta \) Substituting \( \alpha \) and \( \beta \) into the first equation: \[ x + (x + 2) + \gamma = 13 \] This simplifies to: \[ 2x + 2 + \gamma = 13 \] Thus: \[ \gamma = 11 - 2x \] ### Step 3: Substitute into the second Vieta's formula Now, substituting \( \alpha \), \( \beta \), and \( \gamma \) into the second equation: \[ x(x + 2) + (x + 2)(11 - 2x) + x(11 - 2x) = 15 \] Expanding this: \[ x^2 + 2x + (11x + 22 - 2x^2 - 2x) + (11x - 2x^2) = 15 \] Combining like terms: \[ -x^2 + 15x + 22 = 15 \] Rearranging gives: \[ -x^2 + 15x + 7 = 0 \] Multiplying through by -1: \[ x^2 - 15x - 7 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{15 \pm \sqrt{(-15)^2 - 4 \cdot 1 \cdot (-7)}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{15 \pm \sqrt{225 + 28}}{2} \] \[ x = \frac{15 \pm \sqrt{253}}{2} \] ### Step 5: Calculate the roots Now we have: - \( \alpha = \frac{15 + \sqrt{253}}{2} \) - \( \beta = \frac{17 + \sqrt{253}}{2} \) - \( \gamma = 11 - 2\left(\frac{15 + \sqrt{253}}{2}\right) = -\frac{1 + \sqrt{253}}{2} \) ### Step 6: Calculate the absolute values and their sum Now we need to find \( |\alpha| + |\beta| + |\gamma| \): \[ |\alpha| = \frac{15 + \sqrt{253}}{2}, \quad |\beta| = \frac{17 + \sqrt{253}}{2}, \quad |\gamma| = \frac{1 + \sqrt{253}}{2} \] Thus: \[ |\alpha| + |\beta| + |\gamma| = \frac{15 + \sqrt{253}}{2} + \frac{17 + \sqrt{253}}{2} + \frac{1 + \sqrt{253}}{2} \] Combining these: \[ = \frac{33 + 3\sqrt{253}}{2} \] ### Final Result The value of \( |\alpha| + |\beta| + |\gamma| \) is: \[ \frac{33 + 3\sqrt{253}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Solve the equation x^(3)-13x^(2)+15x+189=0 if one root exceeds the other by 2 .

Let alpha, beta and gamma are the roots of the equation 2x^(2)+9x^(2)-27x-54=0 . If alpha, beta, gamma are in geometric progression, then the value of |alpha|+|beta|+|gamma|=

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(2) + x + 3)=0 , then the value of alpha^(3) + beta^(3) + gamma^(3) is:

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

NTA MOCK TESTS-NTA JEE MOCK TEST 54-MATHEMATICS
  1. The value of I=lim(nrarroo)Sigma(r=1)^(n)(r)/(n^(2)+n+r) is equal to

    Text Solution

    |

  2. Find the coordinates of the point P on the line x+y=-13, nearest to th...

    Text Solution

    |

  3. If alpha, beta and gamma are the roots of the equation x^(3)-13x^(2)+1...

    Text Solution

    |

  4. The arithmetic mean of two positive numbers a and b exceeds their geom...

    Text Solution

    |

  5. Total number of solution of tan3x-tan2x-tan3xtan2x=1 in [0,2pi] is equ...

    Text Solution

    |

  6. Which of the following is not a statement ?

    Text Solution

    |

  7. If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2)), then...

    Text Solution

    |

  8. The function f(x)=lim(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes...

    Text Solution

    |

  9. The length of the longest interval in which the function y=sin2x-2sinx...

    Text Solution

    |

  10. The value of the integral I=int(0)^(100pi)(dx)/(1+e^(sinx)) is equal t...

    Text Solution

    |

  11. The coefficient of x^(9) in expansion of (x^(3)+(1)/(2^(log sqrt2(x^(3...

    Text Solution

    |

  12. The order of the differential equation of the family of curves y=k(1)2...

    Text Solution

    |

  13. The sum of the intercepts on the coordinate axes made by a line passin...

    Text Solution

    |

  14. The area (in sq. units) bounded by y=4x-x^2 and y=xis

    Text Solution

    |

  15. If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) a...

    Text Solution

    |

  16. The probability distribution of a random variable (X) is P(X)={{:((x)/...

    Text Solution

    |

  17. Let vecx and vecy are 2 non - zero and non - collinear vectors, then t...

    Text Solution

    |

  18. A skew - symmetric matrix of order n has the maximum number of distinc...

    Text Solution

    |

  19. For a complex number Z, the equation of the line of common chord of th...

    Text Solution

    |

  20. If the integral I=inte^(sinx)(cosx.x^(2)+2x)dx=e^(f(x))g(x)+C (where, ...

    Text Solution

    |