Home
Class 12
MATHS
If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+...

If `tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2))`, then the number of all possible values of x is/are

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{1}{2x+1}\right) + \tan^{-1}\left(\frac{1}{4x+1}\right) = \cot^{-1}\left(\frac{x^2}{2}\right), \] we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] provided \(ab < 1\). ### Step 1: Apply the identity Let \(a = \frac{1}{2x+1}\) and \(b = \frac{1}{4x+1}\). Then we can write: \[ \tan^{-1}\left(\frac{1}{2x+1}\right) + \tan^{-1}\left(\frac{1}{4x+1}\right) = \tan^{-1}\left(\frac{\frac{1}{2x+1} + \frac{1}{4x+1}}{1 - \frac{1}{2x+1} \cdot \frac{1}{4x+1}}\right). \] ### Step 2: Simplify the right-hand side Calculating \(a + b\): \[ \frac{1}{2x+1} + \frac{1}{4x+1} = \frac{(4x+1) + (2x+1)}{(2x+1)(4x+1)} = \frac{6x + 2}{(2x+1)(4x+1)}. \] Calculating \(1 - ab\): \[ 1 - \frac{1}{(2x+1)(4x+1)} = \frac{(2x+1)(4x+1) - 1}{(2x+1)(4x+1)} = \frac{8x^2 + 6x}{(2x+1)(4x+1)}. \] ### Step 3: Combine the results Now, substituting back, we have: \[ \tan^{-1}\left(\frac{\frac{6x + 2}{(2x+1)(4x+1)}}{\frac{8x^2 + 6x}{(2x+1)(4x+1)}}\right) = \tan^{-1}\left(\frac{6x + 2}{8x^2 + 6x}\right). \] ### Step 4: Set the equation equal to cotangent We know that: \[ \cot^{-1}\left(\frac{x^2}{2}\right) = \tan^{-1}\left(\frac{2}{x^2}\right). \] Thus, we equate: \[ \frac{6x + 2}{8x^2 + 6x} = \frac{2}{x^2}. \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ (6x + 2)x^2 = 2(8x^2 + 6x). \] Expanding both sides: \[ 6x^3 + 2x^2 = 16x^2 + 12x. \] ### Step 6: Rearranging the equation Rearranging gives: \[ 6x^3 - 14x^2 - 12x = 0. \] ### Step 7: Factor out common terms Factoring out \(2x\): \[ 2x(3x^2 - 7x - 6) = 0. \] ### Step 8: Solve the quadratic equation Now we solve \(3x^2 - 7x - 6 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot (-6)}}{2 \cdot 3}. \] Calculating the discriminant: \[ 49 + 72 = 121. \] So we have: \[ x = \frac{7 \pm 11}{6}. \] Calculating the roots: 1. \(x = \frac{18}{6} = 3\) 2. \(x = \frac{-4}{6} = -\frac{2}{3}\) ### Step 9: Include the factor \(2x = 0\) From \(2x = 0\), we have \(x = 0\). ### Final Step: Count all possible values Thus, the possible values of \(x\) are \(3\), \(-\frac{2}{3}\), and \(0\). Therefore, the total number of possible values of \(x\) is **3**.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 53

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve for x tan^(-1)(x-1)=cot^(-1)((4)/(x))

tan^(-1)(cot x)-tan^(-1)(cot2x)=

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

NTA MOCK TESTS-NTA JEE MOCK TEST 54-MATHEMATICS
  1. Total number of solution of tan3x-tan2x-tan3xtan2x=1 in [0,2pi] is equ...

    Text Solution

    |

  2. Which of the following is not a statement ?

    Text Solution

    |

  3. If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2)), then...

    Text Solution

    |

  4. The function f(x)=lim(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes...

    Text Solution

    |

  5. The length of the longest interval in which the function y=sin2x-2sinx...

    Text Solution

    |

  6. The value of the integral I=int(0)^(100pi)(dx)/(1+e^(sinx)) is equal t...

    Text Solution

    |

  7. The coefficient of x^(9) in expansion of (x^(3)+(1)/(2^(log sqrt2(x^(3...

    Text Solution

    |

  8. The order of the differential equation of the family of curves y=k(1)2...

    Text Solution

    |

  9. The sum of the intercepts on the coordinate axes made by a line passin...

    Text Solution

    |

  10. The area (in sq. units) bounded by y=4x-x^2 and y=xis

    Text Solution

    |

  11. If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) a...

    Text Solution

    |

  12. The probability distribution of a random variable (X) is P(X)={{:((x)/...

    Text Solution

    |

  13. Let vecx and vecy are 2 non - zero and non - collinear vectors, then t...

    Text Solution

    |

  14. A skew - symmetric matrix of order n has the maximum number of distinc...

    Text Solution

    |

  15. For a complex number Z, the equation of the line of common chord of th...

    Text Solution

    |

  16. If the integral I=inte^(sinx)(cosx.x^(2)+2x)dx=e^(f(x))g(x)+C (where, ...

    Text Solution

    |

  17. If (0, 3+sqrt5) is a point on the ellipse whose foci and (2, 3) and (-...

    Text Solution

    |

  18. A straight is a five card hand containing consecutive values. If m is ...

    Text Solution

    |

  19. Let A=[a(ij)](3xx3) be a matrix such that a(ij)=(i+2j)/(2) where i,j i...

    Text Solution

    |

  20. Let the focus (S) of a parabola divides its one of the focal chords PQ...

    Text Solution

    |